• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

前列腺癌中热休克蛋白27作用的研究进展

陈贤, 郭文静, 杨礼亮, 周煜新, 郭青龙

陈贤, 郭文静, 杨礼亮, 周煜新, 郭青龙. 前列腺癌中热休克蛋白27作用的研究进展[J]. 中国药科大学学报, 2020, 51(6): 731-738. DOI: 10.11665/j.issn.1000-5048.20200613
引用本文: 陈贤, 郭文静, 杨礼亮, 周煜新, 郭青龙. 前列腺癌中热休克蛋白27作用的研究进展[J]. 中国药科大学学报, 2020, 51(6): 731-738. DOI: 10.11665/j.issn.1000-5048.20200613
CHEN Xian, GUO Wenjing, YANG Liliang, ZHOU Yuxin, GUO Qinglong. Research progress on the role of heat shock protein 27 in prostate cancer[J]. Journal of China Pharmaceutical University, 2020, 51(6): 731-738. DOI: 10.11665/j.issn.1000-5048.20200613
Citation: CHEN Xian, GUO Wenjing, YANG Liliang, ZHOU Yuxin, GUO Qinglong. Research progress on the role of heat shock protein 27 in prostate cancer[J]. Journal of China Pharmaceutical University, 2020, 51(6): 731-738. DOI: 10.11665/j.issn.1000-5048.20200613

前列腺癌中热休克蛋白27作用的研究进展

基金项目: 国家自然科学基金资助项目(No.81703550);江苏省青年科学基金资助项目(No.BK20170749)

Research progress on the role of heat shock protein 27 in prostate cancer

Funds: This work was supported by the National Natural Science Foundation of China (No.81703550) and Science Foundation for Distinguished Young Scholars of Jiangsu Province (No.BK20170749)
  • 摘要: 前列腺癌是成年男性最常见的肿瘤之一,而热休克蛋白(HSPs)作为广泛参与多种肿瘤发病机制、诊断、治疗和预后的分子伴侣,在前列腺癌中发挥着重要的生物学功能,并且HSP27被认为是与前列腺特异性膜抗原类似的生物标志物。其中,热休克蛋白家族成员HSP27的表达增加与前列腺癌去势抵抗有关,并且能够促进肿瘤耐药、侵袭与骨转移,从而使前列腺癌更加难以治疗。因此,靶向前列腺癌中的HSP27可以作为一种有前景的肿瘤治疗策略。本文就HSP27的结构与功能、前列腺癌中HSP27介导的去势抵抗及以HSP27为靶点的抗肿瘤治疗研究进行综述,以期为临床中前列腺癌治疗方案提供新的理论依据。
    Abstract: Prostate cancer is one of the most common cancers in adult men. Heat shock proteins (HSPs),as molecular chaperones widely involved in the pathogenesis,diagnosis,treatment and prognosis of various cancers,play crucial biological functions in prostate cancer and it can be considered as valuable biomarkers for cancer therapy, such as prostate-specific membrane antigen. As a member of the heat shock protein family, HSP27 is related to prostate cancer castration resistance,and its expression can promote tumor resistance,invasion and bone metastasis,making prostate cancer more invulnerable to treatments. Therefore,targeting HSP27 in prostate cancer can be perceived as one promising cancer treatment strategy. This article reviews the structure and function of HSP27,and its potential role on castration resistance and targeted therapy in order to provide a new theoretical basis for the clinical treatment of prostate cancer.
  • 学报》是由教育部主管、中国药科大学主办的国家级药学学术刊物,被国内外重要检索数据库收录,为中国中文核心期刊、中国科学引文数据库(CSCD)核心期刊、中国精品科技期刊及中国高校百佳科技期刊。主要报道药学学科创新性科研成果,登载合成药物化学 、天然药物化学、中药学、药剂学、药物分析学、药物代谢动力学、生物技术、生物制药工程、药理学及其他相关学科的研究成果和学术动态。本刊为双月刊,128页,国内外公开发行。

    1.1 本刊设药学前沿、获奖成果、论文、专家评述、综述、专论等栏目。论文一般在6000~8000字,综述 一 般不超过8000字,引用文献中近 5 年发表的应占 70% 以上,应包含本课题组相关研究及思考,并在文末附注已发表的相关科研成果。

    1.2 作者可以通过登录我刊网站的稿件处理系统上传稿件(http://manuscripts.cpu.edu.cn),来稿须附投稿介绍信(本刊网站下载模板),来稿请勿一稿多投(以研究快讯发表或在学术会议上宣读过的论文,可在充实内容后以研究论文发表),文责自负。本刊稿件免收审理费。

    1.3 来稿须注明通信作者,用上标 “*”标注在作者署名后,并在首页脚注处注明其电话、传真和E-mail。基金资助论文请提供相关证明的复印件(扫描后上传至稿件处理系统),并在首页脚注注明基金名称和项目编号,在英文关键词后注明基金名称(英文)和项目编号。例:

    *通信作者 Tel:025-83271566 E-mail:xuebao@cpu.edu.cn

    基金项目 国家自然科学基金项目(No.59637050)

    This study was supported by the National Natural Science Foundation of China(No.59637050)

    1.4 来稿进入审稿程序后,一般 2 个月内通知作者稿件审理情况。投稿后 2 个月未收到通知者,请直接与编辑部联系。基金资助论文在符合发表的条件下优先录用,国家重大项目基金论文可进入快速评审通道,并尽快发表。

    1.5 需作修改的稿件,请作者按照退修通知要求修改并逐项加以说明。请将修改稿连同修改说明上传至本刊稿件处理系统。退修时间超过60 天,则按新稿处理。

    1.6 来稿是否采用,均由本刊编委会最终审定。本编辑部对来稿可作文字上的修改、删节,涉及内容的重大修改须征得作者同意。文稿刊用前,编辑部与作者签署版权转让合同。为扩大学术交流渠道,本刊被国内外著名数据库收录。稿件一经录用,将同时被数据库收录,作者著作权使用费与本刊稿酬一次性给付。如作者不同意收录,请在投稿时声明,否则将视为同意。

    2.1 文题 文题应简明、具体,确切反映文章的主旨。 中文题名一般不超过20 个字,应避免使用非公知公用的缩略语、字符、代号和商品名称,尽可能不出现数学式和化学式。英文题名应与中文题名含义一致。

    2.2 作者 署名仅限在选定课题、制定研究方案、具体研究工作和撰写文稿等方面作出主要贡献,并能就论文内容进行答辩者,一般不超过6人。为本文提供帮助的其他人可写在致谢项下。请标明作者的工作单位,包括单位全称、所在城市及邮政编码。

    2.3 摘要 论文需要同时提供中文和英文摘要。摘要以提供论文的内容梗概为目的,不加评论和补充解释。简明、确切地论述研究目的、采用的方法原理和结论,具有相对独立性。中文和英文摘要均要求采用报道性摘要。具体要求:中英文摘要均为一段式,内容比较具体,一般需要列举关键数据。中英文摘要应保持内容基本一致。

    2.4 关键词 一般3~8个,多个关键词之间用分号分隔,中英文关键词应相对应。

    2.5 引言 概述课题的理论依据、研究思路、实验基础及国内外研究现状,明确指出本文的研究目的及创新之处。

    2.6 材料 动植物、微生物应注明拉丁学名、植物标本应注明鉴定人和存放地。实验动物应注明清洁等级和合格证号。当实验以人或动物为研究对象时,作者应当声明,只有符合机构责任委员会的伦理(道德)标准或依照1975年制定的《赫尔辛基宣言》(1983 年修订),才能进行人体实验。其他主要材料、仪器应说明品种、来源、规格、型号、产地。

    2.7 方法 尽量简单明了,便于他人重复实验。一般方法可引文献,如有改进的地方应重点突出,创新的方法则宜详述。

    2.8 结果和讨论 重点叙述本文研究的结果,新发现及得出的结论与观点。讨论中不重复引言和结果中已叙述的内容。

    2.9 图表 能用文字说明的问题,尽量不用图表。同一数据不要同时用图和表表示。图表一律用英文表达。表采用“三线表”。图中坐标的量和单位符号标于坐标轴外侧。照片要求清晰。

    2.10 结构式和反应式 结构式不要夹杂于行文中,而应以相应的化学名称或分子式表示。反应式转行时应在反应方向符号“→、$ \rightleftharpoons $”等处转行。请尽量采用ChemDraw软件绘制结构式。

    2.11 数字 凡是可以用阿拉伯数字且使用得体的地方,均应使用阿拉伯数字,并应注意有效数字的使用。平均数应写出标准差($ \bar{x}\pm s $)。百分数范围 20%~30%不能写成 20~30%。统计学显著性用 “*P < 0.05,**P < 0.01,***P < 0.001 vs A”表示。

    2.12 单位和量 严格执行GB 3100-3102有关量和单位的规定。量的符号一律采用斜体,如:相对分子质量(Mr),吸收度(A),质量浓度(c),时间(t),等。量值的单位,一律使用国际符号,并用正体,如:1 M HCl应为1 mol/L HCl,转速rpm 应为r/min。量值和单位间空格。图表中用符号表示数值的量和单位时,采用量与单位相比的形式,如 t/min, c/(mol/L)。在一个组合剂量单位代号内,不得有一条以上的斜线,如mg/kg/d应写成mg/(kg·d)。

    2.13 代号和缩写 文中可使用国际代号和缩写,例如:1秒:1 s;2分钟:2 min;3小时:3 h;4天:4 d。相对标准偏差RSD,静脉注射iv,肌肉注射im,腹腔注射ip,皮下注射sc,灌胃ig,口服po

    2.14 药名 中文药名以《中华人民共和国药典》(2020年版)和《中国药品通用名称》(化学工业出版社, 2014)为准。英文药名尽量与国际通用名称一致,采用国际非专利药名(international nonproprietary names, INN)。国家食品药品监督管理局批准的新药,用批准的药名。药名较长时可缩写,但首次出现时应予以注明。药名应少用代号,不用商品名。

    2.15 理化数据表示法 请参照以下写法:······得白色结晶(1.8 g, 76.0%):mp 209~211℃(EtOH/Et2O); $ [{\text{α}}]^{20}_{\rm{D}} $−141.30°(c 0. 403, CHCl3 ):Anal. C21H25O2Cl, C 72. 51, H 7.31, Cl 10. 32(Req. C 72. 89, H 7.31, Cl 10. 29);TLC Rf 0. 44(CHCl3-EtOH, 9∶1);UV(CH3OH)λmax 284(lg ε 4.42)nm;IR( KBr, ν): 3370, 3000, 2200, 1600 cm−11 H NMR (CDCl3, 300 MHz)δ:0.94, 1.16(6H, s, C18 和 C19-CH3 ), 5.59 (1H, s, C6-H), 6.16(2H, s, C4-H, C7-H);MS m/z 343(M)+

    2.16 参考文献 参考文献应限于作者直接阅读过的、发表在正式出版物上的文献。采用顺序编码制,在文内按论文引用文献出现的先后用阿拉伯数字连续编号,如[1-2][3-5],标在相应文字的右上角。

    为利于计算机处理和保证数据库准确检索与统计的原则,须用文献类型标识标注参考文献的类型。 电子文献被引用时需在参考文献类型标识中同时标明其载体类型[文献类型标识/载体类型标识],如网上期刊(J/OL)。

    常见参考文献类型及其标识:

    文献类型 专著 论文集 报纸文章 期刊文章
    标识 M C N J
    文献类型 学位论文 报告 标准 专利
    标识 D E S P
    下载: 导出CSV 
    | 显示表格

    参考文献的著录格式示例:

    连续出版物中的析出文献

    作者只列3人,后面加“et al”,姓名采用姓前名后著录法,西文刊名缩写按 Index Medicus,不要缩写点,中文刊名用英文缩写名称,括号内加注中文期刊的刊名。

    [序号]  作者. 题名[J]. 刊名, 年, 卷(期): 起止页码.

    [1] Zhang JY, Zhang JS, Zhang Y, et al. Studies on the intes-tinal absorption of crocin in rats and determination of the partition coefficient[J]. J China Pharm Univ(中国药科大学学报), 2004, 35(3): 283-284.

    [2] Zhang HH, Kumar S, Barnett AH, et al. C eiling culture of mature human adipocytes:use in studies of adipocyte functions[J]. J Endocrinol, 2000, 164(1/2): 119-128.

    专 著

    [序号] 编者. 书名[M]. 版本(第 1 版不写). 出版地: 出版者, 出版年: 起止页码.

    [3] Qi RM, Wang ZG, Wang SQ. Advances in Pharmacology (药理学进展)[M]. Beijing: People’s Medical Publish-ing House, 2003: 74.

    [4] Peebles PZ, Jr. Probability, Random Rariable, and Ran-dom Signal Principles[M]. 4th ed. New York: McGraw Hill, 2001: 149.

    标 准

    [序号] 起草责任著. 标准代号 标准序号—发布年 标准名称[S]. 出版地: 出版者, 出版年: 引文页码.

    [5] China Association for Standardization. GB/T 21853−2008 Chemicals−Partition Coeficient ( n-octanol/water)−Shake Flask Method [化学品分配系数(正丁醇-水)摇瓶法试验][S]. Beijing: Standards Press of China, 2008.

    [6] Chinese Pharmacopoeia Commission. Chinese Pharmaco-poeia: part 2( 中华人民共和国药典:二部)[S]. Bei-jing: China Medical Science Press, 2010: 310-312 .

    专利文献

    [序号] 专利申请者或所有者.专利题名: 专利号[ P]. 公 告日期或公开日期[引用日期].

    [7] Lafon L. New benzhydrysulphinyl derivatives: 4066686A[P]. 1978-01-03[2011-10-25].

    电子文献

    [序号] 主要责任者. 题名:其他题名信息[文献类型标识/载体类型标识]. 出版地: 出版者,出版年(更新或修改日期)[引用日期]. 获取和访问路径.

    [8] U. S. Food and Drug Administration. FDA approves shard system REMS for TIRF products[EB/OL].(2011-12-29)[2012-01-13]. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm285345.htm.

    学位论文

    [序号] 作者.题名[D]. 保存地: 保存单位, 年份.

    [9] Tian Z. Study of the clinical anti-aggregating effect of picotamide on platelet(吡考他胺抗血小板聚集性的临床研究)[D]. Changchun: Jilin University, 2004.

    (2024年2月修订)

  • [1] . Trends Biochem Sci,2016,41(4):311?323.
    [2] Saini J,Sharma PK. Clinical,prognostic and therapeutic significance of heat shock proteins in cancer[J]. Curr Drug Targets,2018,19(13):1478?1490.
    [3] Wu JM,Liu TE,Rios Z,et al. Heat shock proteins and cancer[J]. Trends Pharmacol Sci,2017,38(3):226?256.
    [4] DeSantis CE,Lin CC,Mariotto AB,et al. Cancer treatment and survivorship statistics,2014[J]. CA:A Cancer J Clin,2014,64(4):252?271.
    [5] Conteduca V,Jayaram A,Romero-Laorden N,et al. Plasma androgen receptor and docetaxel for metastatic castration-resistant prostate cancer[J]. Eur Urol,2019,75(3):368?373.
    [6] Boumahdi S,de Sauvage FJ. The great escape:tumour cell plasticity in resistance to targeted therapy[J]. Nat Rev Drug Discov,2020,19(1):39?56.
    [7] Hoter,Rizk,Naim. The multiple roles and therapeutic potential of molecular chaperones in prostate cancer[J]. Cancers,2019,11(8):1194.
    [8] Yun CW,Kim HJ,Lim JH,et al. Heat shock proteins:agents of cancer development and therapeutic targets in anti-cancer therapy[J]. Cells,2019,9(1):60.
    [9] Carra S,Alberti S,Arrigo PA,et al. The growing world of small heat shock proteins:from structure to functions[J]. Cell Stress Chaperones,2017,22(4):601?611.
    [10] Katsogiannou M,Ziouziou H,Karaki S,et al. The hallmarks of castration-resistant prostate cancers[J]. Cancer Treat Rev,2015,41(7):588?597.
    [11] Haslbeck M,Weinkauf S,Buchner J. Small heat shock proteins:simplicity meets complexity[J]. J Biol Chem,2019,294(6):2121?2132.
    [12] Jego G,Hazoumé A,Seigneuric R,et al. Targeting heat shock proteins in cancer[J]. Cancer Lett,2013,332(2):275?285.
    [13] Cayado-Gutiérrez N,Moncalero VL,Rosales EM,et al. Downregulation of HSP27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN[J]. Cell Stress Chaperones,2013,18(2):243?249.
    [14] Abisambra JF,Blair LJ,Hill SE,et al. Phosphorylation dynamics regulate HSP27-mediated rescue of neuronal plasticity deficits in tau transgenic mice[J]. J Neurosci,2010,30(46):15374?15382.
    [15] Chatterjee S,Burns TF. Targeting heat shock proteins in cancer:a promising therapeutic approach[J]. Int J Mol Sci,2017,18(9):1978.
    [16] Gibert B,Simon S,Dimitrova V,et al. Peptide aptamers:tools to negatively or positively modulate HSPB1(27) function[J]. Philos Trans R Soc Lond B Biol Sci,2013,368(1617):20120075.
    [17] Yu L,Yuan X,Wang D,et al. Selective regulation of p38β protein and signaling by integrin-linked kinase mediates bladder cancer cell migration[J]. Oncogene,2014,33(6):690?701.
    [18] Zhao M,Shen F,Yin YX,et al. Increased expression of heat shock protein 27 correlates with peritoneal metastasis in epithelial ovarian cancer[J]. Reprod Sci,2012,19(7):748?753.
    [19] Thuringer D,Jego G,Wettstein G,et al. Extracellular HSP27 mediates angiogenesis through Toll-like receptor 3[J]. Faseb J,2013,27(10):4169?4183.
    [20] O''''Callaghan-Sunol C,Gabai VL,Sherman MY. Hsp27 modulates p53 signaling and suppresses cellular senescence[J]. Cancer Res,2007,67(24):11779?11788.
    [21] Zhang S,Hu YM,Huang YW,et al. Heat shock protein 27 promotes cell proliferation through activator protein-1 in lung cancer[J]. Oncol Lett,2015,9(6):2572?2576.
    [22] Hu WM,Wang JP,Luo GQ,et al. Proteomics-based analysis of differentially expressed proteins in the CXCR1-knockdown gastric carcinoma MKN45 cell line and its parental cell[J]. Acta Biochim Biophys Sin (Shanghai),2013,45(10):857?866.
    [23] Bruey JM,Ducasse C,Bonniaud P,et al. Hsp27 negatively regulates cell death by interacting with cytochrome C[J]. Nat Cell Biol,2000,2(9):645?652.
    [24] Li JY,Hu WX,Lan Q. The apoptosis-resistance in t-AUCB-treated glioblastoma cells depends on activation of Hsp27[J]. J Neuro-oncol,2012,110(2):187?194.
    [25] Liu CC,Chou KT,Hsu JW,et al. High metabolic rate and stem cell characteristics of esophageal cancer stem-like cells depend on the Hsp27-AKT-HK2 pathway[J]. Int J Cancer,2019,145(8):2144?2156.
    [26] Kostenko S,Moens U. Heat shock protein 27 phosphorylation:kinases,phosphatases,functions and pathology[J]. Cell Mol Life Sci,2009,66(20):3289?3307.
    [27] Dubrez L,Causse S,Borges Bonan N,et al. Heat-shock proteins:chaperoning DNA repair[J]. Oncogene,2020,39(3):516?529.
    [28] Chine VB,Au NPB,Ma CHE. Therapeutic benefits of maintaining mitochondrial integrity and calcium homeostasis by forced expression of Hsp27 in chemotherapy-induced peripheral neuropathy[J]. Neurobiol Dis,2019,130:104492.
    [29] Yin CF,Kao SC,Hsu CL,et al. Phosphoproteome analysis reveals dynamic heat shock protein 27 phosphorylation in tanshinone IIA-induced cell death[J]. J Proteome Res,2020,19(4):1620?1634.
    [30] Okuno M,Yasuda I,Adachi S,et al. The significance of phosphorylated heat shock protein 27 on the prognosis of pancreatic cancer[J]. Oncotarget,2016,7(12):14291?14299.
    [31] Guo Y,Ziesch A,Hocke S,et al. Overexpression of heat shock protein 27 (HSP 27) increases gemcitabine sensitivity in pancreatic cancer cells through S-phase arrest and apoptosis[J]. J Cell Mol Med,2015,19(2):340?350.
    [32] Kang DX,Choi HJ,Kang SJ,et al. Ratio of phosphorylated HSP27 to nonphosphorylated HSP27 biphasically Acts as a determinant of cellular fate in gemcitabine-resistant pancreatic cancer cells[J]. Cell Signal,2015,27(4):807?817.
    [33] Fujita K,Nonomura N. Role of androgen receptor in prostate cancer:a review[J]. World J Mens Health,2019,37(3):288?295.
    [34] Cano LQ,Lavery DN,Bevan CL. Mini-review:foldosome regulation of androgen receptor action in prostate cancer[J]. Mol Cell Endocrinol,2013,369(1/2):52?62.
    [35] Zoubeidi A,Zardan A,Beraldi E,et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity[J]. Cancer Res,2007,67(21):10455?10465.
    [36] Cinar B,Mukhopadhyay NK,Meng GY,et al. Phosphoinositide 3-kinase-independent non-genomic signals transit from the androgen receptor to Akt1 in membrane raft microdomains[J]. J Biol Chem,2007,282(40):29584?29593.
    [37] Ciccarese C,Massari F,Iacovelli R,et al. Prostate cancer heterogeneity:discovering novel molecular targets for therapy[J]. Cancer Treat Rev,2017,54:68?73.
    [38] Li J,Fu X,Cao S,et al. Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27)[J]. J Biol Chem,2018,293(33):12719?12729.
    [39] Kiliccioglu I,Konac E,Dikmen AU,et al. Hsp-27 and NF-κB pathway is associated with AR/AR-V7 expression in prostate cancer cells[J]. Gene,2019,697:138?143.
    [40] Zheng G,Zhang Z,Liu H,et al. HSP27-mediated extracellular and intracellular signaling pathways synergistically confer chemoresistance in squamous cell carcinoma of tongue[J]. Clin Cancer Res,2018,24(5):1163?1175.
    [41] Baylot V,Katsogiannou M,Andrieu C,et al. Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer[J]. Mol Ther,2012,20(12):2244?2256.
    [42] Azad AA,Zoubeidi A,Gleave ME,et al. Targeting heat shock proteins in metastatic castration-resistant prostate cancer[J]. Nat Rev Urol,2015,12(1):26?36.
    [43] Zoubeidi A,Zardan A,Wiedmann RM,et al. Hsp27 promotes insulin-like growth factor-I survival signaling in prostate cancer via p90Rsk-dependent phosphorylation and inactivation of BAD[J]. Cancer Res,2011,71(14):5054.
    [44] Hayashi N,Peacock JW,Beraldi E,et al. Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch[J]. Cell Death Differ,2012,19(6):990?1002.
    [45] Aloy MT,Hadchity E,Bionda C,et al. Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells[J]. Int J Radiat Oncol,2008,70(2):543?553.
    [46] Cui Y,Sun Y,Hu S,et al. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemoresistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals[J]. Oncogene,2016,35(47):6065?6076.
    [47] Ketteler J,Wittka A,Leonetti D,et al. Caveolin-1 regulates the ASMase/ceramide-mediated radiation response of endothelial cells in the context of tumor-stroma interactions[J]. Cell Death Dis,2020,11(4):228.
    [48] Andrieu C,Taieb D,Baylot V,et al. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E[J]. Oncogene,2010,29(13):1883?1896.
    [49] Ziouziou H,Andrieu C,Laurini E,et al. Targeting Hsp27/eIF4E interaction with phenazine compound:a promising alternative for castration-resistant prostate cancer treatment[J]. Oncotarget,2017,8(44):77317?77329.
    [50] Voll EA,Ogden IM,Pavese JM,et al. Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression[J]. Oncotarget,2014,5(9):2648?2663.
    [51] Lee JW,Kwak HJ,Lee JJ,et al. HSP27 regulates cell adhesion and invasion via modulation of focal adhesion kinase and MMP-2 expression[J]. Eur J Cell Biol,2008,87(6):377?387.
    [52] Cordonnier T,Bishop JL,Shiota M,et al. Hsp27 regulates EGF/β-catenin mediated epithelial to mesenchymal transition in prostate cancer[J]. Int J Cancer,2015,136(6):E496?E507.
    [53] Shiota M,Bishop JL,Nip KM,et al. Hsp27 regulates epithelial mesenchymal transition,metastasis,and circulating tumor cells in prostate cancer[J]. Cancer Res,2013,73(10):3109?3119.
    [54] Cho SY,Kang S,Kim DS,et al. HSP27,ALDH6A1 and prohibitin act as a trio-biomarker to predict survival in late metastatic prostate cancer[J]. Anticancer Res,2018,38(11):6551?6560.
    [55] Foster CS,on behalf of the Trans Atlantic Prostate Group,Dodson AR,et al. Hsp-27 expression at diagnosis predicts poor clinical outcome in prostate cancer independent of ETS-gene rearrangement[J]. Br J Cancer,2009,101(7):1137?1144.
    [56] Loriot Y,Zoubeidi A,Gleave ME. Targeted therapies in metastatic castration-resistant prostate cancer:beyond the androgen receptor[J]. Urol Clin North Am,2012,39(4):517?531.
    [57] Dong Y,Chen Y,Zhu D,et al. Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy[J]. J Control Release,2020,322:416?425.
    [58] Kumano M,Furukawa J,Shiota M,et al. Cotargeting stress-activated Hsp27 and autophagy as a combinatorial strategy to amplify endoplasmic reticular stress in prostate cancer[J]. Mol Cancer Ther,2012,11(8):1661?1671.
    [59] Nappi L,Aguda AH,Nakouzi NA,et al. Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models[J]. J Clin Invest,2020,130(2):699?714.
    [60] Martin PL,Yin JJ,Seng V,et al. Androgen deprivation leads to increased carbohydrate metabolism and hexokinase 2-mediated survival in Pten/Tp53-deficient prostate cancer[J]. Oncogene,2017,36(4):525?533.
    [61] Kim JH,Jung YJ,Choi B,et al. Overcoming HSP27-mediated resistance by altered dimerization of HSP27 using small molecules[J]. Oncotarget,2016,7(33):53178?53190.
    [62] Heinrich JC,Donakonda S,Haupt VJ,et al. New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells[J]. Oncotarget,2016,7(42):68156?68169.
  • 期刊类型引用(3)

    1. 刘成波,何冰,谭鸿舟,吴虹,何黎琴. 新型大黄酸丹皮酚偶联物的合成及抗炎活性. 合成化学. 2024(03): 261-266 . 百度学术
    2. 尚飞扬,刘成波,谭鸿舟,何冰,何黎琴. 3-乙酰基-7-羟基香豆素衍生物的设计、合成及抗血小板聚集活性. 中国药科大学学报. 2024(03): 367-374 . 本站查看
    3. 陈芳芳,章军,邸继鹏,赵桉熠,许煜迪,陈畅,刘安,郭丛,闫智勇. 白及饮片等级评价. 中成药. 2024(12): 3917-3925 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  257
  • HTML全文浏览量:  3
  • PDF下载量:  1134
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-04-19
  • 修回日期:  2020-10-13
  • 刊出日期:  2020-12-24

目录

/

返回文章
返回
x 关闭 永久关闭