• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

冠状病毒免疫逃逸机制研究进展

王荣花, 郑志慧, 张雨茜, 闵锐, 朱英, 张评浒

王荣花, 郑志慧, 张雨茜, 闵锐, 朱英, 张评浒. 冠状病毒免疫逃逸机制研究进展[J]. 中国药科大学学报, 2021, 52(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20210101
引用本文: 王荣花, 郑志慧, 张雨茜, 闵锐, 朱英, 张评浒. 冠状病毒免疫逃逸机制研究进展[J]. 中国药科大学学报, 2021, 52(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20210101
WANG Ronghua, ZHENG Zhihui, ZHANG Yuqian, MIN Rui, ZHU Ying, ZHANG Pinghu. Progress of research on immune escape mechanism of coronavirus[J]. Journal of China Pharmaceutical University, 2021, 52(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20210101
Citation: WANG Ronghua, ZHENG Zhihui, ZHANG Yuqian, MIN Rui, ZHU Ying, ZHANG Pinghu. Progress of research on immune escape mechanism of coronavirus[J]. Journal of China Pharmaceutical University, 2021, 52(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20210101

冠状病毒免疫逃逸机制研究进展

基金项目: 扬州大学高端创新人才资助项目(No.20180613);江苏省人兽共患病学重点实验室开放课题资助项目(No.R1707)

Progress of research on immune escape mechanism of coronavirus

Funds: This study was supported by the Advanced Innovative Talents Project of Yangzhou University (No.20180613) and the Open Project from Jiangsu Provincial Key Laboratory of Human Zoonosis (No.R1707)
  • 摘要: 冠状病毒是人和动物的重要致病原,其中新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)给人类健康带来了致命威胁。宿主固有免疫反应是宿主抵抗病原体入侵的第一道防线,但过激的免疫应答也会加重病毒感染和病理损伤。病毒免疫逃逸是冠状病毒的重要致病机制。本文主要从宿主免疫传感器、干扰素、细胞因子和冠状病毒免疫逃逸方面重点阐述了冠状病毒的致病机制,以期为抗冠状病毒药物的研发提供理论参考。
    Abstract: Coronavirus is an important pathogen of humans and animals. Among them, the novel coronavirus disease (COVID-19) breaking out in 2019 has brought a fatal threat to human health. The host"s innate immune response is the host"s first line of defense against pathogen invasion, but an excessive immune response can also aggravate viral infection and pathological damage. The immune escape of coronavirus is a critical pathogenic mechanism causing death. This work mainly reviews the pathogenic mechanism of coronavirus immune escape from several aspects such as host immunosensor, interferon, cytokine and coronavirus antagonizing host immune response, which provide a theoretical reference for the development of anti-coronavirus drugs.
  • [1] . J Virol, 2013, 87(17): 9754-9767.
    [2] Othman H, Bouslama Z, Brandenburg JT, et al. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism[J]. Biochem Biophys Res Commun, 2020, 527(3): 702-708.
    [3] Shang J, Wan YS, Luo CM, et al. Cell entry mechanisms of SARS-CoV-2[J]. Proc Natl Acad Sci U S A, 2020, 117(21): 11727-11734.
    [4] Lan J, Ge JW, Yu JF, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807): 215-220.
    [5] Li K, Wohlford-Lenane C, Perlman S, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4[J]. J Infect Dis, 2016, 213(5): 712-722.
    [6] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e8.
    [7] Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis[J]. Nat Rev Microbiol, 2009, 7(6): 439-450.
    [8] Du LY, He YX, Zhou YS, et al. The spike protein of SARS-CoV: a target for vaccine and therapeutic development[J]. Nat Rev Microbiol, 2009, 7(3): 226-236.
    [9] Günther C, Josenhans C, Wehkamp J. Crosstalk between microbiota, pathogens and the innate immune responses[J]. Int J Med Microbiol, 2016, 306(5): 257-265.
    [10] Rathinam VA, Fitzgerald KA. Cytosolic surveillance and antiviral immunity[J]. Curr Opin Virol, 2011, 1(6): 455-462.
    [11] Wong LY, Lui PY, Jin DY. A molecular arms race between host innate antiviral response and emerging human coronaviruses[J]. Virol Sin, 2016, 31(1): 12-23.
    [12] Durán A, Alvarez-Mon M, Valero N. Role of toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) in viral infections[J]. Invest Clin, 2014, 55(1): 61-81.
    [13] Gay NJ, Symmons MF, Gangloff M, et al. Assembly and localization of Toll-like receptor signalling complexes[J]. Nat Rev Immunol, 2014, 14(8): 546-558.
    [14] Matsumoto M, Oshiumi H, Seya T. Antiviral responses induced by the TLR3 pathway[J]. Rev Med Virol, 2011, 21(2): 67-77.
    [15] Mazaleuskaya L, Veltrop R, Ikpeze N, et al. Protective role of Toll-like Receptor 3-induced type I interferon in murine coronavirus infection of macrophages[J]. Viruses, 2012, 4(5): 901-923.
    [16] Jiang FG, Ramanathan A, Miller MT, et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I[J]. Nature, 2011, 479(7373): 423-427.
    [17] Loo YM, Gale MJr. Immune signaling by RIG-I-like receptors[J]. Immunity, 2011, 34(5): 680-692.
    [18] Ford E, Thanos D. The transcriptional code of human IFN-beta gene expression[J]. Biochim Biophys Acta, 2010, 1799(3/4): 328-336.
    [19] Li JF, Liu Y, Zhang XM. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5[J]. J Virol, 2010, 84(13): 6472-6482.
    [20] Ma F, Li B, Liu SY, et al. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS[J]. J Immunol, 2015, 194(4): 1545-1554.
    [21] Chu H, Chan JF, Wang YX, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19[J]. Clin Infect Dis, 2020, 71(6): 1400-1409.
    [22] Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice[J]. Cell Host Microbe, 2016, 19(2): 181-193.
    [23] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
    [24] de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses[J]. Nat Rev Microbiol, 2016, 14(8): 523-534.
    [25] Lo BK, Yu M, Zloty D, et al. CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinomas[J]. Am J Pathol, 2010, 176(5): 2435-2446.
    [26] Xu Z, Shi L, Wang YJ, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8(4): 420-422.
    [27] Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology[J]. Semin Immunopathol, 2017, 39(5): 529-539.
    [28] Bouvet M, Lugari A, Posthuma CC, et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes[J]. J Biol Chem, 2014, 289(37): 25783-25796.
    [29] Chen Y, Cai H, Pan JA, et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase[J]. Proc Natl Acad Sci U S A, 2009, 106(9): 3484-3489.
    [30] Daffis S, Szretter KJ, Schriewer J, et al. 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members[J]. Nature, 2010, 468(7322): 452-456.
    [31] Channappanavar R, Fehr AR, Zheng J, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes[J]. J Clin Invest, 2019, 129(9): 3625-3639.
    [32] Kindler E, Thiel V. SARS-CoV and IFN: too little, too late[J]. Cell Host Microbe, 2016, 19(2): 139-141.
    [33] Kindler E, Jónsdóttir HR, Muth D, et al. Efficient replication of the novel human Betacoronavirus EMC on primary human epithelium highlights its zoonotic potential[J]. mBio, 2013, 4(1): e00611-e00612.
    [34] Omrani AS, Saad MM, Baig K, et al. Ribavirin and interferon Alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study[J]. Lancet Infect Dis, 2014, 14(11): 1090-1095.
    [35] Lokugamage KG, Narayanan K, Nakagawa K, et al. Middle east respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin[J]. J Virol, 2015, 89(21): 10970-10981.
    [36] Kamitani W, Huang C, Narayanan K, et al. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein[J]. Nat Struct Mol Biol, 2009, 16(11): 1134-1140.
    [37] Clementz MA, Chen ZB, Banach BS, et al. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases[J]. J Virol, 2010, 84(9): 4619-4629.
    [38] Frieman M, Ratia K, Johnston RE, et al. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling[J]. J Virol, 2009, 83(13): 6689-6705.
    [39] Alfuwaires M, Altaher A, Kandeel M. Molecular dynamic studies of interferon and innate immunity resistance in MERS CoV non-structural protein 3[J]. Biol Pharm Bull, 2017, 40(3): 345-351.
    [40] Liu G, Lee J H, Parker Z M, et al. ISG15-dependent activation of the RNA sensor MDA5 and its antagonism by the SARS-CoV-2 papain-like protease[J].bioRxiv,2020,doi:10.1101/2020.10.26.356048.
    [41] Siu KL, Kok KH, Ng MH, et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex[J]. J Biol Chem, 2009, 284(24): 16202-16209.
    [42] Yang Y, Zhang L, Geng HY, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists[J]. Protein Cell, 2013, 4(12): 951-961.
    [43] Siu KL, Chan CP, Kok KH, et al. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain[J]. Cell Mol Immunol, 2014, 11(2): 141-149.
    [44] Freundt EC, Yu L, Park E, et al. Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein[J]. J Virol, 2009, 83(13): 6631-6640.
    [45] de Groot RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group[J]. J Virol, 2013, 87(14): 7790-7792.
    [46] Niemeyer D, Zillinger T, Muth D, et al. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist[J]. J Virol, 2013, 87(22): 12489-12495.
    [47] Siu KL, Yeung ML, Kok KH, et al. Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response[J]. J Virol, 2014, 88(9): 4866-4876.
计量
  • 文章访问数:  1129
  • HTML全文浏览量:  16
  • PDF下载量:  1338
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-01-15
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭