[1] |
. Cell, 2019, 176(3): 677.
|
[2] |
Pham T, Roth S, Kong J, et al. An update on immunotherapy for solid tumors: a review[J]. Ann Surg Oncol, 2018, 25(11): 3404-3412.
|
[3] |
Chang CH, Qiu J, O''Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162(6): 1229-1241.
|
[4] |
Klener P, Jr., Otahal P, Lateckova L, et al. Immunotherapy approaches in cancer treatment[J]. Curr Pharm Biotechnol, 2015, 16(9): 771-781.
|
[5] |
Liu YH, Zang XY, Wang JC, et al. Diagnosis and management of immune related adverse events (irAEs) in cancer immunotherapy[J]. Biomedecine Pharmacother, 2019, 120: 109437.
|
[6] |
Weiner GJ. Building better monoclonal antibody-based therapeutics[J]. Nat Rev Cancer, 2015, 15(6): 361-370.
|
[7] |
Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies: design, therapy, perspectives[J]. Drug Des Devel Ther, 2018, 12: 195-208.
|
[8] |
Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline[J]. Nat Rev Drug Discov, 2019, 18(8): 585-608.
|
[9] |
Lindau D, Gielen P, Kroesen M, et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells[J]. Immunology, 2013, 138(2): 105-115.
|
[10] |
Qin H, Lerman B, Sakamaki I, et al. Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice[J]. Nat Med, 2014, 20(6): 676-681.
|
[11] |
Liu C, Workman CJ, Vignali DA. Targeting regulatory T cells in tumors[J]. Febs J, 2016, 283(14): 2731-2748.
|
[12] |
de Coa?a YP, Wolodarski M, Poschke I, et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma[J]. Oncotarget, 2017, 8(13): 21539-21553.
|
[13] |
Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition[J]. Am J Clin Oncol, 2016, 39(1): 98-106.
|
[14] |
Abdin SM, Zaher DM, Arafa EA, et al. Tackling cancer resistance by immunotherapy: updated clinical impact and safety of PD-1/PD-L1 inhibitors[J]. Cancers (Basel), 2018, 10(2): E32.
|
[15] |
Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade[J]. Proc Natl Acad Sci USA, 2002, 99(19): 12293-12297.
|
[16] |
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy[J]. Blood, 2018, 131(1): 58-67.
|
[17] |
Syn NL, Teng MWL, Mok TSK, et al. De-novo and acquired resistance to immune checkpoint targeting[J]. Lancet Oncol, 2017, 18(12): e731-e741.
|
[18] |
Dong HD, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800.
|
[19] |
Sul J,Blumenthal GM,Jiang XP, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1[J]. Oncologist, 2016, 21(5): 643-650.
|
[20] |
Ning YM, Suzman D, Maher VE, et al. FDA approval summary: atezolizumab for the treatment of patients with progressive advanced urothelial carcinoma after platinum-containing chemotherapy[J]. Oncologist, 2017, 22(6): 743-749.
|
[21] |
Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review[J]. Eur J Cancer, 2016, 54: 139-148.
|
[22] |
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 439-448.
|
[23] |
Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial[J]. Lancet Oncol, 2019, 20(1): 31-42.
|
[24] |
Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy[J]. Biol Blood Marrow Transplant, 2019, 25(4): e123-e127.
|
[25] |
Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma[J]. N Engl J Med, 2017, 377(26): 2531-2544.
|
[26] |
Ji TJ, Lang JY, Ning B, et al. Enhanced natural killer cell immunotherapy by rationally assembling fc fragments of antibodies onto tumor membranes[J]. Adv Mater, 2019, 31(6): e1804395.
|
[27] |
Chiu J, Ernst DM, Keating A. Acquired natural killer cell dysfunction in the tumor microenvironment of classic Hodgkin lymphoma[J]. Front Immunol, 2018, 9: 267.
|
[28] |
Ibrahim EC, Guerra N, Lacombe MJ, et al. Tumor-specific up-regulation of the nonclassical class I HLA-G antigen expression in renal carcinoma[J]. Cancer Res, 2001, 61(18): 6838-6845.
|
[29] |
Hu Y, Tian ZG, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy[J]. Acta Pharmacol Sin, 2018, 39(2): 167-176.
|
[30] |
Han JF, Chu JH, Keung Chan W, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells[J]. Sci Rep, 2015, 5: 11483.
|
[31] |
Burger MC, Zhang C, Harter PN, et al. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy[J]. Front Immunol, 2019, 10: 2683.
|
[32] |
Li Y, Hermanson DL, Moriarity BS, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity[J]. Cell Stem Cell, 2018, 23(2): 181-192.e5.
|
[33] |
Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors[J]. N Engl J Med, 2020, 382(6): 545-553.
|
[34] |
Hu Y, Tian ZG, Zhang C. Natural killer cell-based immunotherapy for cancer: advances and prospects[J]. Engineering, 2019, 5(1): 106-114.
|
[35] |
Song Q, Zhang CD, Wu XH. Therapeutic cancer vaccines: From initial findings to prospects[J]. Immunol Lett, 2018, 196: 11-21.
|
[36] |
Bowen WS, Svrivastava AK, Batra L, et al. Current challenges for cancer vaccine adjuvant development[J]. Expert Rev Vaccines, 2018, 17(3): 207-215.
|
[37] |
van der Burg SH, Arens R, Ossendorp F, et al. Vaccines for established cancer: overcoming the challenges posed by immune evasion[J]. Nat Rev Cancer, 2016, 16(4): 219-233.
|
[38] |
Aldous AR, Dong JZ. Personalized neoantigen vaccines: a new approach to cancer immunotherapy[J]. Bioorg Med Chem, 2018, 26(10): 2842-2849.
|
[39] |
Chen FJ, Zou ZY, Du J, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors[J]. J Clin Invest, 2019, 129(5): 2056-2070.
|
[40] |
Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma[J]. Nature, 2019, 565(7738): 240-245.
|
[41] |
Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J]. Nature, 2019, 565(7738): 234-239.
|
[42] |
Zang R, Jiang T, Zeng TZ, et al. Advances of combined immunotherapy in tumor[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(4): 383-391.
|
[43] |
Sahin U, ?Türeci. Personalized vaccines for cancer immunotherapy[J]. Science, 2018, 359(6382): 1355-1360.
|
[44] |
Hennessy ML, Bommareddy PK, Boland G, et al. Oncolytic immunotherapy[J]. Surg Oncol Clin N Am, 2019, 28(3): 419-430.
|
[45] |
Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(8): 498-513.
|
[46] |
Breitbach CJ, Bell JC, Hwang TH, et al. The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594)[J]. Oncolytic Virother, 2015, 4: 25-31.
|
[47] |
Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs[J]. Nat Rev Drug Discov, 2015, 14(9): 642-662.
|
[48] |
Rosewell Shaw A, Suzuki M. Oncolytic viruses partner with T-cell therapy for solid tumor treatment[J]. Front Immunol, 2018, 9: 2103.
|
[49] |
Russell L, Peng KW, Russell SJ, et al. Oncolytic viruses: priming time for cancer immunotherapy[J]. BioDrugs, 2019, 33(5): 485-501.
|
[50] |
Tsun A, Miao XN, Wang CM, et al. Oncolytic immunotherapy for treatment of cancer[J]. Adv Exp Med Biol, 2016, 909: 241-283.
|
[51] |
Yl?sm?ki E, Cerullo V. Design and application of oncolytic viruses for cancer immunotherapy[J]. Curr Opin Biotechnol, 2020, 65: 25-36.
|
[52] |
Qin S, Xu LP, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019, 18(1): 155.
|
[53] |
Xin X, Pei X, Yang X, et al. Rod-shaped active drug particles enable efficient and safe gene delivery[J]. Adv Sci (Weinh), 2017, 4(11): 1700324.
|
[54] |
Xin XF, Teng C, Du XQ, et al. Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route[J]. Theranostics, 2018, 8(13): 3474-3489.
|
[55] |
Xin XF, Du XQ, Xiao QQ, et al. Drug nanorod-mediated intracellular delivery of microRNA-101 for self-sensitization via autophagy inhibition[J]. Nano-Micro Lett, 2019, 11(1): 1-16.
|
[56] |
Ma LY, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science, 2019, 365(6449): 162-168.
|