• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

肿瘤免疫治疗及其药物研发进展

邢续扬, 王孝春, 何伟

邢续扬, 王孝春, 何伟. 肿瘤免疫治疗及其药物研发进展[J]. 中国药科大学学报, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102
引用本文: 邢续扬, 王孝春, 何伟. 肿瘤免疫治疗及其药物研发进展[J]. 中国药科大学学报, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102
XING Xuyang, WANG Xiaochun, HE Wei. Advances in research on tumor immunotherapy and its drug development[J]. Journal of China Pharmaceutical University, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102
Citation: XING Xuyang, WANG Xiaochun, HE Wei. Advances in research on tumor immunotherapy and its drug development[J]. Journal of China Pharmaceutical University, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102

肿瘤免疫治疗及其药物研发进展

基金项目: 国家自然基金资助项目(No.81872823);中国药科大学“双一流”建设资助项目(No.CPU2018PZQ13)

Advances in research on tumor immunotherapy and its drug development

Funds: This study was supported by the National Natural Science Foundation of China (No.81872823) and the Double First-Class Project of China Pharmaceutical University (No.CPU2018PZQ13)
  • 摘要: 分子生物学和肿瘤生物学的进步极大地改变了肿瘤治疗模式,大量科学研究揭示了肿瘤免疫逃逸的机制,各种新型肿瘤免疫治疗应运而生,成为继手术、放疗、化疗、靶向治疗后肿瘤的另一有效治疗手段。本文介绍了肿瘤细胞免疫逃逸的机制,并重点介绍了细胞因子免疫疗法、治疗性单克隆抗体免疫疗法、PD-1/PD-L1疗法、CAR-T疗法、肿瘤疫苗、溶瘤病毒等新型免疫疗法的设计原理、上市生物药物及最新研究进展,同时对比了各免疫疗法的优缺点,为肿瘤免疫治疗中的药物研发提供思路与方法。
    Abstract: The progress of molecular biology and tumor biology has greatly changed the mode of cancer treatment. A large number of scientific studies have revealed the mechanism of tumor immune evasion, and a variety of new types of tumor immunotherapy have emerged, which has become another effective treatment of cancer after surgery, radiotherapy, chemotherapy and targeted therapy. This paper introduces the mechanism of tumor cell immune evasion, and focuses on the design principle, biological drugs and the latest research progress of immunotherapy, such as cytokine immunotherapies, therapeutic monoclonal antibody immunotherapy, PD-1/PD-L1 therapy, CAR-T therapy, tumor vaccine, oncolytic virus and so on. At the same time, the advantages and disadvantages of various immunotherapies are compared to provide reference for drug research and development in tumor immunotherapy.
  • [1] . Cell, 2019, 176(3): 677.
    [2] Pham T, Roth S, Kong J, et al. An update on immunotherapy for solid tumors: a review[J]. Ann Surg Oncol, 2018, 25(11): 3404-3412.
    [3] Chang CH, Qiu J, O''Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162(6): 1229-1241.
    [4] Klener P, Jr., Otahal P, Lateckova L, et al. Immunotherapy approaches in cancer treatment[J]. Curr Pharm Biotechnol, 2015, 16(9): 771-781.
    [5] Liu YH, Zang XY, Wang JC, et al. Diagnosis and management of immune related adverse events (irAEs) in cancer immunotherapy[J]. Biomedecine Pharmacother, 2019, 120: 109437.
    [6] Weiner GJ. Building better monoclonal antibody-based therapeutics[J]. Nat Rev Cancer, 2015, 15(6): 361-370.
    [7] Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies: design, therapy, perspectives[J]. Drug Des Devel Ther, 2018, 12: 195-208.
    [8] Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline[J]. Nat Rev Drug Discov, 2019, 18(8): 585-608.
    [9] Lindau D, Gielen P, Kroesen M, et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells[J]. Immunology, 2013, 138(2): 105-115.
    [10] Qin H, Lerman B, Sakamaki I, et al. Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice[J]. Nat Med, 2014, 20(6): 676-681.
    [11] Liu C, Workman CJ, Vignali DA. Targeting regulatory T cells in tumors[J]. Febs J, 2016, 283(14): 2731-2748.
    [12] de Coa?a YP, Wolodarski M, Poschke I, et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma[J]. Oncotarget, 2017, 8(13): 21539-21553.
    [13] Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition[J]. Am J Clin Oncol, 2016, 39(1): 98-106.
    [14] Abdin SM, Zaher DM, Arafa EA, et al. Tackling cancer resistance by immunotherapy: updated clinical impact and safety of PD-1/PD-L1 inhibitors[J]. Cancers (Basel), 2018, 10(2): E32.
    [15] Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade[J]. Proc Natl Acad Sci USA, 2002, 99(19): 12293-12297.
    [16] Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy[J]. Blood, 2018, 131(1): 58-67.
    [17] Syn NL, Teng MWL, Mok TSK, et al. De-novo and acquired resistance to immune checkpoint targeting[J]. Lancet Oncol, 2017, 18(12): e731-e741.
    [18] Dong HD, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800.
    [19] Sul J,Blumenthal GM,Jiang XP, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1[J]. Oncologist, 2016, 21(5): 643-650.
    [20] Ning YM, Suzman D, Maher VE, et al. FDA approval summary: atezolizumab for the treatment of patients with progressive advanced urothelial carcinoma after platinum-containing chemotherapy[J]. Oncologist, 2017, 22(6): 743-749.
    [21] Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review[J]. Eur J Cancer, 2016, 54: 139-148.
    [22] Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 439-448.
    [23] Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial[J]. Lancet Oncol, 2019, 20(1): 31-42.
    [24] Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy[J]. Biol Blood Marrow Transplant, 2019, 25(4): e123-e127.
    [25] Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma[J]. N Engl J Med, 2017, 377(26): 2531-2544.
    [26] Ji TJ, Lang JY, Ning B, et al. Enhanced natural killer cell immunotherapy by rationally assembling fc fragments of antibodies onto tumor membranes[J]. Adv Mater, 2019, 31(6): e1804395.
    [27] Chiu J, Ernst DM, Keating A. Acquired natural killer cell dysfunction in the tumor microenvironment of classic Hodgkin lymphoma[J]. Front Immunol, 2018, 9: 267.
    [28] Ibrahim EC, Guerra N, Lacombe MJ, et al. Tumor-specific up-regulation of the nonclassical class I HLA-G antigen expression in renal carcinoma[J]. Cancer Res, 2001, 61(18): 6838-6845.
    [29] Hu Y, Tian ZG, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy[J]. Acta Pharmacol Sin, 2018, 39(2): 167-176.
    [30] Han JF, Chu JH, Keung Chan W, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells[J]. Sci Rep, 2015, 5: 11483.
    [31] Burger MC, Zhang C, Harter PN, et al. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy[J]. Front Immunol, 2019, 10: 2683.
    [32] Li Y, Hermanson DL, Moriarity BS, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity[J]. Cell Stem Cell, 2018, 23(2): 181-192.e5.
    [33] Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors[J]. N Engl J Med, 2020, 382(6): 545-553.
    [34] Hu Y, Tian ZG, Zhang C. Natural killer cell-based immunotherapy for cancer: advances and prospects[J]. Engineering, 2019, 5(1): 106-114.
    [35] Song Q, Zhang CD, Wu XH. Therapeutic cancer vaccines: From initial findings to prospects[J]. Immunol Lett, 2018, 196: 11-21.
    [36] Bowen WS, Svrivastava AK, Batra L, et al. Current challenges for cancer vaccine adjuvant development[J]. Expert Rev Vaccines, 2018, 17(3): 207-215.
    [37] van der Burg SH, Arens R, Ossendorp F, et al. Vaccines for established cancer: overcoming the challenges posed by immune evasion[J]. Nat Rev Cancer, 2016, 16(4): 219-233.
    [38] Aldous AR, Dong JZ. Personalized neoantigen vaccines: a new approach to cancer immunotherapy[J]. Bioorg Med Chem, 2018, 26(10): 2842-2849.
    [39] Chen FJ, Zou ZY, Du J, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors[J]. J Clin Invest, 2019, 129(5): 2056-2070.
    [40] Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma[J]. Nature, 2019, 565(7738): 240-245.
    [41] Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J]. Nature, 2019, 565(7738): 234-239.
    [42] Zang R, Jiang T, Zeng TZ, et al. Advances of combined immunotherapy in tumor[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(4): 383-391.
    [43] Sahin U, ?Türeci. Personalized vaccines for cancer immunotherapy[J]. Science, 2018, 359(6382): 1355-1360.
    [44] Hennessy ML, Bommareddy PK, Boland G, et al. Oncolytic immunotherapy[J]. Surg Oncol Clin N Am, 2019, 28(3): 419-430.
    [45] Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(8): 498-513.
    [46] Breitbach CJ, Bell JC, Hwang TH, et al. The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594)[J]. Oncolytic Virother, 2015, 4: 25-31.
    [47] Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs[J]. Nat Rev Drug Discov, 2015, 14(9): 642-662.
    [48] Rosewell Shaw A, Suzuki M. Oncolytic viruses partner with T-cell therapy for solid tumor treatment[J]. Front Immunol, 2018, 9: 2103.
    [49] Russell L, Peng KW, Russell SJ, et al. Oncolytic viruses: priming time for cancer immunotherapy[J]. BioDrugs, 2019, 33(5): 485-501.
    [50] Tsun A, Miao XN, Wang CM, et al. Oncolytic immunotherapy for treatment of cancer[J]. Adv Exp Med Biol, 2016, 909: 241-283.
    [51] Yl?sm?ki E, Cerullo V. Design and application of oncolytic viruses for cancer immunotherapy[J]. Curr Opin Biotechnol, 2020, 65: 25-36.
    [52] Qin S, Xu LP, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019, 18(1): 155.
    [53] Xin X, Pei X, Yang X, et al. Rod-shaped active drug particles enable efficient and safe gene delivery[J]. Adv Sci (Weinh), 2017, 4(11): 1700324.
    [54] Xin XF, Teng C, Du XQ, et al. Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route[J]. Theranostics, 2018, 8(13): 3474-3489.
    [55] Xin XF, Du XQ, Xiao QQ, et al. Drug nanorod-mediated intracellular delivery of microRNA-101 for self-sensitization via autophagy inhibition[J]. Nano-Micro Lett, 2019, 11(1): 1-16.
    [56] Ma LY, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science, 2019, 365(6449): 162-168.
计量
  • 文章访问数:  1757
  • HTML全文浏览量:  58
  • PDF下载量:  1649
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24
  • 修回日期:  2020-07-09
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭