• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

注射用盐酸米诺环素微球贮库的制备及其性能研究

张婷, 廖航, 程玉婷, 吴小红

张婷, 廖航, 程玉婷, 吴小红. 注射用盐酸米诺环素微球贮库的制备及其性能研究[J]. 中国药科大学学报, 2021, 52(1): 52-59. DOI: 10.11665/j.issn.1000-5048.20210107
引用本文: 张婷, 廖航, 程玉婷, 吴小红. 注射用盐酸米诺环素微球贮库的制备及其性能研究[J]. 中国药科大学学报, 2021, 52(1): 52-59. DOI: 10.11665/j.issn.1000-5048.20210107
ZHANG Ting, LIAO Hang, CHENG Yuting, WU Xiaohong. Preparation and properties of injectable minocycline hydrochloride microsphere depot[J]. Journal of China Pharmaceutical University, 2021, 52(1): 52-59. DOI: 10.11665/j.issn.1000-5048.20210107
Citation: ZHANG Ting, LIAO Hang, CHENG Yuting, WU Xiaohong. Preparation and properties of injectable minocycline hydrochloride microsphere depot[J]. Journal of China Pharmaceutical University, 2021, 52(1): 52-59. DOI: 10.11665/j.issn.1000-5048.20210107

注射用盐酸米诺环素微球贮库的制备及其性能研究

基金项目: 国家自然科学基金资助项目(No.81970914)

Preparation and properties of injectable minocycline hydrochloride microsphere depot

Funds: This study was supposed by the National Natural Science Foundation of China(No.81970914)
  • 摘要: 制备盐酸米诺环素微球贮库,并评价其体外缓释效果及理化性质。以聚乳酸-羟基乙酸共聚物[poly (lactic-co-glycolic acid),PLGA] 为原材料,采用静电喷雾的方法制备得到盐酸米诺环素微球,并通过偏振光显微镜以及扫描电镜对微球形态大小进行表征,将其与蔗糖乙酸酯异丁酸酯(sucrose acetate isobutyrate,SAIB)原位贮库以1∶10的比例混合形成盐酸米诺环素微球贮库,并考察其体外释放性能及孔隙率变化。结果表明,盐酸米诺环素微球表面光滑,直径(5.294±1.222)μm。盐酸米诺环素微球与SAIB混合形成盐酸米诺环素微球贮库后,盐酸米诺环素的突释大幅度降低,在第1天从60%降至3.27%并持续释放至第42天。同时结果表明该贮库在0~15 d孔隙率由(12.53±0.43)%迅速增加到(32.53±0.43)%,15~45 d孔隙率由(32.53±0.43)%缓慢增加到(33.81±0.54)%。本研究制备的盐酸米诺环素微球贮库制备工艺简单、释药性能良好,有望成为盐酸米诺环素给药的一种有效途径。
    Abstract: To prepare a minocycline hydrochloride microsphere depot and evaluate its release performance and physicochemical properties, poly (lactic-co-glycolic acid) (PLGA) was used as raw material, the minocycline hydrochloride microspheres were prepared by electrospray, and the morphology and size distribution of the microspheres were characterized by polarizing microscopy and scanning electron microscopy (SEM). The microspheres were then mixed with sucrose acetate isobutyrate (SAIB) depot at a ratio of 1:10 to form a minocycline hydrochloride microsphere depot, and its release performance and porosity changes were evaluated. The results showed that the microspheres had smooth surface and the diameter was (5.294 ± 1.222) μm. After the microspheres were added into SAIB depot, the burst release of minocycline hydrochloride significantly decreased from 60% to 3.27% at the first day, and then the release lasted for 42 days . Additionally, the porosity of the depot increased rapidly from (12.53 ± 0.43)% to (32.53 ± 0.43)% during days 0-15, and increased slowly from (32.53 ± 0.43)% to (33.81 ± 0.54)% during days 15-45. The minocycline hydrochloride microsphere depot prepared in this study is expected to be an effective way for the application of minocycline hydrochloride for its good release performance and simple preparation process.
  • [1] . Lancet, 2005, 366(9499): 1809-1820.
    [2] de Oliveira LF, Jorge AO, Dos Santos SS. In vitro minocycline activity on superinfecting microorganisms isolated from chronic periodontitis patients[J]. Braz Oral Res, 2006, 20(3): 202-206.
    [3] Vernillo AT, Rifkin BR. Effects of tetracyclines on bone metabolism[J]. Adv Dent Res, 1998, 12(1): 56-62.
    [4] Bettany JT, Wolowacz RG. Tetracycline derivatives induce apoptosis selectively in cultured monocytes and macrophages but not in mesenchymal cells[J]. Adv Dent Res, 1998, 12(2): 136-143.
    [5] Almazin SM, Dziak R, Andreana S, et al. The effect of doxycycline hyclate, chlorhexidine gluconate, and minocycline hydrochloride on osteoblastic proliferation and differentiation in vitro[J]. J Periodontol, 2009, 80(6): 999-1005.
    [6] Shao HY, Zhang YG, Yang X, et al. Effects of inhibitory concentration minocycline on the proliferation, differentiation, and mineralization of osteoblasts[J]. West China J Stomatol(华西口腔医学杂志), 2018, 36(2): 140-145.
    [7] Babich H, Tipton DA. In vitro response of human gingival epithelioid S-G cells to minocycline[J]. Toxicol In vitro, 2002, 16(1): 11-21.
    [8] Ma YH, Song JL, Almassri HNS, et al. Minocycline-loaded PLGA electrospun membrane prevents alveolar bone loss in experimental peridontitis[J]. Drug Deliv, 2020, 27(1): 151-160.
    [9] Okumu FW, Dao le N, Fielder PJ, et al. Sustained delivery of human growth hormone from a novel gel system: SABER[J]. Biomaterials, 2002, 23(22): 4353-4358.
    [10] Reynolds RC, Chappel CI. Sucrose acetate isobutyrate (SAIB): historical aspects of its use in beverages and a review of toxicity studies prior to 1988[J]. Food Chem Toxicol, 1998, 36(2): 81-93.
    [11] Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems[J]. J Control Release, 2001, 73(2/3): 121-136.
    [12] Lu YX, Yu YL, Tang X. Sucrose acetate isobutyrate as an in situ forming system for sustained risperidone release[J]. J Pharm Sci, 2007, 96(12): 3252-3262.
    [13] Yang X, Almassri HNS, Zhang QY, et al. Electrosprayed naringin-loaded microsphere/SAIB hybrid depots enhance bone formation in a mouse calvarial defect model[J]. Drug Deliv, 2019, 26(1): 137-146.
    [14] Yao SL, Liu HY, Yu SK, et al. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior[J]. Regen Biomater, 2016, 3(5): 309-317.
    [15] Su RN,Fan WJ,Zhang ZQ,et al. Preparation and evaluation of azithromycin-loaded microspheres for oral administration[J]. J China Pharm Univ(中国药科大学学报),2020,51(3):299-304.
    [16] Ford VAN,Pack DW,Braatz RD.Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-a review[J]. J Control Release, 2013, 165(1):29-37.
    [17] Gu B, Sun XH, Papadimitrakopoulos F, et al. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites[J]. J Control Release, 2016, 228: 170-178.
    [18] Zhang XK,Han W,Fan DZ, et al. Drug release properties of poly (lactic-co-glycolic acid) coatings[J]. J Funct Polym(功能高分子学报),2014,27(2)219-223.
    [19] An SB ,Wang LG,Hu YH. Influencing factors of property and drug releasing of drug-loaded poly(D,L-lactide-co-glycolide)microspheres[J]. Chin J Hosp Pharm(中国医院药学杂志),2016,36(13):1140-1144.
    [20] Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J]. J Control Release, 1987, 5(1): 23-36.
    [21] Cai XQ, Luan YX, Dong Q, et al. Sustained release of 5-fluorouracil by incorporation into sodium carboxymethylcellulose sub-micron fibers[J]. Int J Pharm, 2011, 419(1/2): 240-246.
    [22] Haroosh HJ, Dong Y, Lau KT. Tetracycline hydrochloride (TCH)-loaded drug carrier based on PLA: PCL nanofibre mats: experimental characterisation and release kinetics modelling[J]. J Mater Sci, 2014, 49(18): 6270-6281.
    [23] Gibson I, Momeni A, Filiaggi M. Minocycline-loaded calcium polyphosphate glass microspheres as a potential drug-delivery agent for the treatment of periodontitis[J]. J Appl Biomater Funct Mater, 2019, 17(3): 2280800019863637.
    [24] Okamoto-Shibayama K, Sekino J, Yoshikawa K, et al. Antimicrobial susceptibility profiles of oral Treponema species[J]. Anaerobe, 2017, 48: 242-248.
    [25] Takahashi N, Ishihara K, Kato T, et al. Susceptibility of Actinobacillus actinomycetemcomitans to six antibiotics decreases as biofilm matures[J]. J Antimicrob Chemother, 2007, 59(1): 59-65.
    [26] Ren DX,Chen PC,Zheng P, et al. Preparation of poly-γ-glutamic acid/chitosan nanoparticles and pH responsive release properties[J]. J Funct Polym, 2020, 33(1):54-62.
    [27] Siepmann J, Elkharraz K, Siepmann F, et al. How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment[J]. Biomacromolecules, 2005, 6(4): 2312-2319.
    [28] Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Adv Drug Deliv Rev, 1997, 28(1): 5-24.
    [29] Zhou C,Yan YH. Synthesis and degradation of poly (lactic-co-glycolic acid)[J]. Orthop Biomech Mater Clin (生物骨科材料与临床研究) ,2006, 3(5):50-53.
    [30] Breitenbach A, Pistel K, Kissel T. Biodegradable comb polyesters. Part II. Erosion and release properties of poly(vinyl alcohol)-g-poly(lactic-co-glycolic acid)[J]. Polymer, 2000, 41(13): 4781-4792.
    [31] Lin X, Xu YH, Tang X, et al. A uniform ultra-small microsphere/SAIB hybrid depot with low burst release for long-term continuous drug release[J]. Pharm Res, 2015, 32(11): 3708-3721.
计量
  • 文章访问数:  399
  • HTML全文浏览量:  9
  • PDF下载量:  1298
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-12-06
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭