• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

他唑巴坦杂质A国家标准物质的研制

肖亭, 王晨, 田冶, 张夏, 刘颖, 马步芳, 刘书妤, 姚尚辰, 冯艳春

肖亭, 王晨, 田冶, 张夏, 刘颖, 马步芳, 刘书妤, 姚尚辰, 冯艳春. 他唑巴坦杂质A国家标准物质的研制[J]. 中国药科大学学报, 2021, 52(1): 60-65. DOI: 10.11665/j.issn.1000-5048.20210108
引用本文: 肖亭, 王晨, 田冶, 张夏, 刘颖, 马步芳, 刘书妤, 姚尚辰, 冯艳春. 他唑巴坦杂质A国家标准物质的研制[J]. 中国药科大学学报, 2021, 52(1): 60-65. DOI: 10.11665/j.issn.1000-5048.20210108
XIAO Ting, WANG Chen, TIAN Ye, ZHANG Xia, LIU Ying, MA Bufang, LIU Shuyu, YAO Shangchen, FENG Yanchun. Establishment of national reference standard of tazobactam impurity A[J]. Journal of China Pharmaceutical University, 2021, 52(1): 60-65. DOI: 10.11665/j.issn.1000-5048.20210108
Citation: XIAO Ting, WANG Chen, TIAN Ye, ZHANG Xia, LIU Ying, MA Bufang, LIU Shuyu, YAO Shangchen, FENG Yanchun. Establishment of national reference standard of tazobactam impurity A[J]. Journal of China Pharmaceutical University, 2021, 52(1): 60-65. DOI: 10.11665/j.issn.1000-5048.20210108

他唑巴坦杂质A国家标准物质的研制

基金项目: 国家科技支撑计划资助项目(No.2015BAK45B01)

Establishment of national reference standard of tazobactam impurity A

Funds: This study was supported by National Science and Technology Support Program(2015BAK45B01)
  • 摘要: 研制他唑巴坦杂质A国家标准物质,为提高国内他唑巴坦的质量控制标准提供依据。对他唑巴坦杂质A进行合成,利用红外、质谱、核磁共振波谱技术进行结构确认,并对杂质A进行含量均匀性检查和短期稳定性考察,再测定其水分和炽灼残渣含量,并以10 mmol/L醋酸铵溶液-乙腈(98∶2)为流动相的高相液相色谱法测定杂质A的纯度,应用质量平衡法确定首批他唑巴坦杂质A国家标准物质的含量,同时采用核磁共振波谱定量法测定其含量,与质量平衡法结果相互验证。结果发现,本研究所研制的他唑巴坦杂质A标准物质与《中华人民共和国药典:二部》(2015年版)他唑巴坦系统适用性溶液中最大降解杂质和USP41中收载的他唑巴坦有关物质A标准物质结构一致;在95%置信范围内,分装后杂质A的瓶间和瓶内方差之比为0.61(小于F0.05(11,12)),均匀性良好;杂质A中有机杂质含量为0.90%,水分含量为1.24%,无机杂质含量为0.25%,以质量平衡法确定杂质A含量为97.6%,与核磁共振波谱定量法结果97.1%基本一致;在25 ℃条件下,杂质A面积归一化纯度在0、3、5和10 d的均值均为99.1%,证明样品在室温下10 d内稳定。本研究首次制备了他唑巴坦杂质A国家标准物质。
    Abstract: To improve the standard of quality control of tazobactam and its preparations in China, national reference standard of tazobactam impurity A was developed. After tazobactam impurity A was synthesized, its structure was validated by infrared (IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR), and its content uniformity and short-term stability were measured and investigated. Then, water content and residue on ignition of impurity A were determined, and its purity was determined using high performance liquid chromatography (HPLC) with 10 mmol/L ammonium acetate solution-acetonitrile (98∶2) as the mobile phase. Mass balance method was used to determine the content of the first batch of tazobactam impurity A national standard substance. Meanwhile, nuclear magnetic quantitative method was used to calculate the content, which was mutually verified with the mass balance method. The developed reference material of tazobactam impurity A is consistent with the maximum degradation impurity in tazobactam system applicability solution and the reference material of tazobactam related substance A contained in USP41. Within the 95% confidence range, the ratio of inter- and intra-bottle variance of impurity A after separation was 0.61 (< F0.05(11,12)), proving that the uniformity was satisfying. The contents of organic impurity, water content and inorganic impurity in impurity A were 0.90%, 1.24% and 0.25%, respectively. The content of impurity A was determined to be 97.6% by mass balance method, which was basically consistent with the result of nuclear magnetic quantitative method (97.1%). Under the condition of 25 °C, the area normalized purity of impurity A was 99.1% at 0, 3, 5 and 10 days, proving that the sample was stable at room temperature for 10 days. Finally the first batch of national standard substance of tazobactam impurity A was established successfully.
  • [1] . Beijing: China Medical Science and Technology Press, 2020: 34-35.
    [2] Singh DK, Sahu A, Kumar S, et al. Critical review on establishment and availability of impurity and degradation product reference standards, challenges faced by the users, recent developments, and trends[J]. Trac Trends Anal Chem, 2018, 101: 85-107.
    [3] Rose U. In situ degradation: a new concept for system suitability tests in monographs of the European Pharmacopoeia[J]. J Pharm Biomed Anal, 1998, 18(1/2): 1-14.
    [4] Zhang WQ, Hu CQ. Theory of selectivity of RP-LC C18 column and its application[J]. Acta Pharm Sin (药学学报), 2010, 45(5): 555-559.
    [5] Li W, Zhang WQ, Li Q, et al. Development and application of reference materials containing mixed degradation products of amoxicillin and ampicillin[J]. Acta Pharm Sin (药学学报),2014, 49 (9): 1310-1314.
    [6] Bai GY, Ma GQ, Hou ML, et al. Development of β-lactamase inhibitors[J]. Chem Ind Eng (化学工业与工程),2001, 18(6): 395-400.
    [7] Feng YC, Wang C, Tian Y, et al. Establishment of national reference standard of fluconazole impurity H[J]. Chin Pharm J (中国药学杂志),2018, 53(17): 1516-1522.
    [8] Lee VJ, Lenhard R, Cesark FF, et al. An efficient degradation of tazobactam, a beta-lactamase inhibitor, to metabolite M-1[J]. Synth Commun, 1994, 24(11): 1597-1601.
    [9] Marunaka T, Maniwa M, Matsushima E, et al. High-performance liquid chromatographic determination of a new beta-lactamase inhibitor and its metabolite in combination therapy with piperacillin in biological materials[J]. J Chromatogr, 1988, 431(1): 87-101.
    [10] Marunaka T, Matsushima E, Minami Y, et al. Degradation of beta-lactamase inhibitor, (2S, 3R, 5S)-3-methyl-7-oxo-3-(1H-1, 2, 3-triazol-1-yl-methyl)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4, 4-dioxide (YTR-830H), in aqueous solutions and alkaline methanol solution: pathway and structural elucidation of products[J]. Chem Pharm Bull (Tokyo), 1988, 36(11): 4478-4487.
    [11] Liu Y, Hu CQ. Fundamental research and application of the knowledge base for residual solvent determination in pharmaceuticals[J]. Chin J Pharm Anal (药物分析杂志),2007, 27(12): 1938-1943.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 修回日期:  2020-12-09
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭