[1] |
. Respirology, 2016, 21(1): 14-23.
|
[2] |
Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease [J]. Lancet, 2004, 364(9435): 709-721.
|
[3] |
Peiffer G, Underner M, Perriot J. Les effets respiratoires du tabagisme (The respiratory effects of smoking)[J]. Rev Pneumol Clin, 2018, 74(3): 133-144.
|
[4] |
Toledo-Pons N, Cosío BG, Velasco MD. Chronic obstructive pulmonary disease in non-smokers [J]. Arch Bronconeumol, 2017, 53(2): 45-46.
|
[5] |
Corhay JL, Frusch N, Louis R. Interrelations génétique-environnement: la broncho-pneumopathie chronique obstructive [COPD: genetics and environmental interactions] [J]. Rev Med Liege, 2012, 67(5-6): 292-297.
|
[6] |
Raghavan D, Varkey A, Bartter T. Chronic obstructive pulmonary disease: the impact of gender [J]. Curr Opin Pulm Med, 2017, 23(2): 117-123.
|
[7] |
Cortopassi F, Gurung P, Pinto-Plata V. Chronic obstructive pulmonary disease in elderly patients [J]. Clin Geriatr Med, 2017, 33(4): 539-552.
|
[8] |
Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease [J]. Lancet, 2015, 385(9971): 899-909.
|
[9] |
McGuinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms [J]. J Clin Med, 2017, 6(2): 21.
|
[10] |
Stockley RA. Neutrophils and protease/antiprotease imbalance [J]. Am J Respir Crit Care Med, 1999, 160(5 Pt 2): S49-52.
|
[11] |
Pauwels NS, Bracke KR, Dupont LL, et al. Role of IL-1α and the Nlrp3/caspase-1/IL-1β axis in cigarette smoke-induced pulmonary inflammation and COPD [J]. Eur Respir J, 2011, 38(5): 1019-1028.
|
[12] |
Qiu SL, Zhang H, Tang QY, et al. Neutrophil extracellular traps induced by cigarette smoke activate plasmacytoid dendritic cells [J]. Thorax, 2017, 72(12): 1084-1093.
|
[13] |
Jiang B, Guan Y, Shen HJ, et al. Akt/PKB signaling regulates cigarette smoke-induced pulmonary epithelial-mesenchymal transition [J]. Lung Cancer, 2018, 122: 44-53.
|
[14] |
Eapen MS, Sharma P, Gaikwad AV, et al. Epithelial-mesenchymal transition is driven by transcriptional and post transcriptional modulations in COPD: implications for disease progression and new therapeutics [J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 1603-1610.
|
[15] |
Barnes PJ. Senescence in COPD and its comorbidities [J]. Annu Rev Physiol, 2017, 79: 517-539.
|
[16] |
Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts [J]. Thorax, 2015, 70(5): 482-489.
|
[17] |
Ghosh M, Miller YE, Nakachi I, et al. Exhaustion of airway basal progenitor cells in early and established chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med, 2018, 197(7): 885-896.
|
[18] |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018 [J]. Cell Death Differ, 2018, 25(3): 486-541.
|
[19] |
Pouwels SD, Zijlstra GJ, van der Toorn M, et al. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice [J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(4): L377-386.
|
[20] |
Wang Y, Zhou JS, Xu XC, et al. Endoplasmic reticulum chaperone GRP78 mediates cigarette smoke-induced necroptosis and injury in bronchial epithelium [J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 571-581.
|
[21] |
Leermakers PA, AMWJSchols, Kneppers AEM, et al. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD) [J]. Sci Rep, 2018, 8(1): 15007.
|
[22] |
Billington CK, Penn RB, Hall IP. β (2) agonists [J]. Handb Exp Pharmacol, 2017, 237: 23-40.
|
[23] |
Williams DM, Rubin BK. Clinical pharmacology of bronchodilator medications [J]. Respir Care, 2018, 63(6): 641-654.
|
[24] |
Yamada M, Ichinose M. The cholinergic pathways in inflammation: a potential pharmacotherapeutic target for COPD [J]. Front Pharmacol, 2018, 9: 1426.
|
[25] |
Vogelmeier CF, Bateman ED, Pallante J, et al. Efficacy and safety of once-daily QVA149 compared with twice-daily salmeterol-fluticasone in patients with chronic obstructive pulmonary disease (ILLUMINATE): a randomised, double-blind, parallel group study [J]. Lancet Respir Med, 2013, 1(1): 51-60.
|
[26] |
Barnes PJ. Theophylline [J]. Am J Respir Crit Care Med, 2013, 188(8): 901-906.
|
[27] |
Lazaar AL, Sweeney LE, MacDonald AJ, et al. A novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans [J]. Br J Clin Pharmacol, 2011, 72(2): 282-293.
|
[28] |
Churg A, Wang R, Wang X, et al. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs [J]. Thorax, 2007, 62(8): 706-713.
|
[29] |
Barnes PJ. Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease [J]. Pharmacol Rev, 2016, 68(3): 788-815.
|
[30] |
Doukas J, Eide L, Stebbins K, et al. Aerosolized phosphoinositide 3-kinase gamma/delta inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease [J]. J Pharmacol Exp Ther, 2009, 328(3): 758-765.
|
[31] |
Erra M, Taltavull J, Gréco A, et al. Discovery of a potent, selective, and orally available PI3Kδ inhibitor for the treatment of inflammatory diseases [J]. ACS Med Chem Lett, 2016, 8(1): 118-123.
|
[32] |
Fenwick PS, Macedo P, Kilty IC, et al. Effect of JAK inhibitors on release of CXCL9, CXCL10 and CXCL11 from human airway epithelial cells [J]. PLoS One, 2015, 10(6): e0128757.
|
[33] |
Hegab AE, Sakamoto T, Nomura A, et al. Niflumic acid and AG-1478 reduce cigarette smoke-induced mucin synthesis: the role of hCLCA1 [J]. Chest, 2007, 131(4): 1149-1156.
|
[34] |
Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease [J]. Cochrane Database Syst Rev, 2017, 9(9): Cd002309.
|
[35] |
Watz H, Mistry SJ, Lazaar AL. Safety and tolerability of the inhaled phosphodiesterase 4 inhibitor GSK256066 in moderate COPD [J]. Pulm Pharmacol Ther, 2013, 26(5): 588-595.
|
[36] |
Yang Q, Wu FR, Wang JN, et al. Nox4 in renal diseases: an update [J]. Free Radic Biol Med, 2018, 124: 466-472.
|
[37] |
Laleu B, Gaggini F, Orchard M, et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis [J]. J Med Chem, 2010, 53(21): 7715-7730.
|
[38] |
Soubhye J, Chikh Alard I, Aldib I, et al. Discovery of novel potent reversible and irreversible myeloperoxidase inhibitors using virtual screening procedure [J]. J Med Chem, 2017, 60(15): 6563-6586.
|