• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

丰城鸡血藤的化学成分

金晨, 黄慧莲, 何玉琴, 张凌

金晨, 黄慧莲, 何玉琴, 张凌. 丰城鸡血藤的化学成分[J]. 中国药科大学学报, 2021, 52(2): 177-185. DOI: 10.11665/j.issn.1000-5048.20210206
引用本文: 金晨, 黄慧莲, 何玉琴, 张凌. 丰城鸡血藤的化学成分[J]. 中国药科大学学报, 2021, 52(2): 177-185. DOI: 10.11665/j.issn.1000-5048.20210206
JIN Chen, HUANG Huilian, HE Yuqin, ZHANG Ling. Chemical constituents from the stem of Callerya nitida Benth.var.hirsutissima Z.Wei[J]. Journal of China Pharmaceutical University, 2021, 52(2): 177-185. DOI: 10.11665/j.issn.1000-5048.20210206
Citation: JIN Chen, HUANG Huilian, HE Yuqin, ZHANG Ling. Chemical constituents from the stem of Callerya nitida Benth.var.hirsutissima Z.Wei[J]. Journal of China Pharmaceutical University, 2021, 52(2): 177-185. DOI: 10.11665/j.issn.1000-5048.20210206

丰城鸡血藤的化学成分

基金项目: 国家自然科学基金资助项目(No.81960697,No.81460595);江西省一流学科中药学资助项目(No.JXSYLXK-ZHYA0073)

Chemical constituents from the stem of Callerya nitida Benth.var.hirsutissima Z.Wei

Funds: This study was supported by the National Natural Science Foundation of China (No.81960697,No.81460595) and the Funded Project of First-Class Discipline of Traditional Chinese Pharmacy in Jiangxi Province (No.JXSYLXK-ZHYA0073)
  • 摘要: 采用大孔吸附树脂、正、反相硅胶、Sephadex LH-20等多种柱色谱方法和制备高效液相色谱法对鸡血藤属植物丰城鸡血藤Callerya nitita Benth.var.hirsutissima.Z.Wei.藤茎70%乙醇提取物的石油醚和正丁醇萃取部位化学成分进行分离,并根据化合物的理化性质、波谱数据对化合物的结构进行鉴定。从两个萃取部位共分离鉴定了1个三萜类化合物和20个黄酮类化合物,即蒲公英赛酮(1)、槐角苷(2)、saikoisoflavonoside A(3)、鹰嘴豆芽素A 7-O-β-D-呋喃芹菜糖基-(1→5)-β-D-呋喃芹菜糖基(1→6)-β-D-吡喃葡萄糖苷(4)、刺芒柄花素-7-O-β-D-吡喃半乳糖苷(5)、3′-O-甲基红车轴草素(6)、鹰嘴豆芽素A 7-O-β-D-呋喃芹菜糖基-(1→2)-β-D-吡喃葡萄糖苷(7)、槐属双苷(8)、黄甘草苷(9)、4′-羟基-3′-甲氧基异黄酮-7-O-β-D-呋喃芹菜糖基-(1→6)-β-D-吡喃葡萄糖苷(10)、樱黄素(11)、樱黄素4′-O-β-D-吡喃葡萄糖苷(12)、红车轴草素-7-O-β-D-吡喃葡萄糖苷(13)、8-甲氧基异刺芒柄花素(14)、染料木素(15)、红车轴草素(16)、鹰嘴豆芽素A(17)、5,7-二羟基-3′,5′-二甲氧基异黄酮(18)、芒柄花苷(19)、异芒柄花素(20)、木犀草素(21)。其中化合物1 ~ 10、12 ~ 14、16 ~ 18、20为该植物中首次分离得到。
    Abstract: The chemical constituents from 70% ethanol petroleum ether and n-butanol extractions of Callerya nitita Benth.var.hirsutissima.Z.Wei. were separated by preparative high-performance liquid chromatographic techniques, including repeated column chromatography over macroporous adsorption resin, silica gel, ODS, Sephadex LH-20. The structures of the compounds were identified by their physicochemical properties, spectral data, and mass spectrometry data, in comparison with literature. In our research, one triterpenoids, taraxerone (1), and twenty flavonoids, including genistein-4′-O-β-glucoside (2), 5-hydroxy-4′-methoxyisoflavone-7-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (3), biochanin A 7-O-β-D-apiofuranosyl-(1→5)-β-D-apiofuranosyl- (1→6)-β-D-glucopyranoside (4), formononetin-7-O-β-D-galactopyranoside (5), 5,7-dihydroxy-3′,4′-dimethoxyisoflavone (6), biochanin A-7-O-β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside (7), 5, 7-dihydroxyisoflavone-4′-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-glucopyranoside (8), formononetin-7-O-D-apio-β-D-furanosyl(l→2)-β-D-glucopyranoside (9), 4′-hydroxy-3′-methoxyisoflavone-7-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (10), prunetin (11), prunetin 4′-O-β-D-glucopyranoside (12), pratensein7-O-β-D-glucoside (13), 8-methoxyisoformononetin (14), genistein (15), 3′-hydroxybiochanin A (16), biochanin A (17), 5,7-dihydroxy-3′,5′-dimethoxyisoflavone (18), ononin (19), isoformononetin (20), 5,7,3′,4′-tetrahydroxyflavone (21) were isolated from the two extract parts.Compounds 1-10, 12-14, 16-18, 20 were obtained from this plant, and it is the first time to investigate the plant for the first time.
  • [1] .Beijing: Ministry of Health of the People′s Republic of China, 1995: 81.
    [2] Health Department of Jiangxi Province. Standards for Traditional Chinese Medicines in Jiangxi Province[S].Nanchang: Health Department of Jiangxi Province,2014: 46-48.
    [3] Food and Drug Administration of Hunan Province.Standards for Traditional Chinese Medicines in Hunan Province[S].Changsha: Food and Drug Administration of Hunan Province,2009: 34-35.
    [4] Xiong Y, Jin C, Cao L, et al.Research progress on the medicinal resources of the genus Millettia in China[J].J Chin Med Mater(中药材), 2020, 43(4): 1015-1022.
    [5] Yu WW, Jin C, Shuang PC, et al.Isoflavones and flavans from Millettia nitida var. hirsutissima[J].Chin J Chin Mater Med(中国中药杂志), 2015, 40(12): 2363-2366.
    [6] He YQ, Jin C, Huang B, et al.Isolation and identification of chemical constituents from Millettla nitida var.hirsutissima[J].Chin J Exp Tradit Med Formulae(中国实验方剂学杂志), 2018, 24(2): 51-56.
    [7] Xu J, Deng ZW, Lin WH, et al.Chemical constituents of mangrove plant Excoecaria agallocha in Hainan Province[J].Chin Tradit Herb Drugs(中草药), 2009, 40(11): 1704-1707.
    [8] Liu XH, Wang CH, Chou GX, et al. Flavonoids of Desmodium micropjyllum[J].Nat Prod Res Dev(天然产物研究与开发), 2010, 22(6): 976-978, 1008.
    [9] Li X, Li JF, Wang D, et al.Isoflavone glycosides from the bark of Maackia amurensis[J].Acta Pharm Sin(药学学报), 2009, 44(1): 63-68.
    [10] Farag SF, Ahmed AS, Terashima K, et al. Isoflavonoid glycosides from Dalbergia sissoo[J]. Phytochemistry, 2001, 57(8): 1263-1268.
    [11] Drenin AA, Botirov EK, Petrulyak EV.Two new isoflavlnoid monogalactosides from Trifolium pratense roots[J].Chem Nat Compd, 2008, 44(1): 24-27.
    [12] Hosny M, Rosazza JPN. Microbial hydroxylation and methylation of genistein by streptomycetes[J]. J Nat Prod, 1999, 62(12): 1609-1612.
    [13] Djouossi MG, Mabou FD, Foning Tebou PL, et al.Chevalierinoside B and C: two new isoflavonoid glycosides from the stem bark of Antidesma laciniatum Muell. Arg (syn. Antidesma chevalieri Beille)[J]. Phytochem Lett, 2014, 9: 149-152.
    [14] Tang YP, Lou FC, Ma W, et al. Isoflavonoid glycosides from the pericarps of Sophora japonica[J].J China Pharm Univ(中国药科大学学报), 2001, 32(3): 187-189.
    [15] Liu Q, Liu YR. Chemical composition research of Glycyrrhiza eurycarpa P.C.Li[J].Acta Pharm Sin(药学学报), 1989, 24(7): 525-531.
    [16] Shen Y, Feng Z, Jiang J, et al. Dibenzoyl and isoflavonoid glycosides from Sophora flavescens: inhibition of the cytotoxic effect of D-Galactosamine on human hepatocyte HL-7702 [J]. J Nat Prod, 2013, 76(12): 2337-2345.
    [17] Liu YM, Jiang BP, Shen SN, et al. Chemical constituents from leaves of Cajanus cajan[J].Chin Tradit Herb Drugs(中草药), 2014, 45(4): 466-470.
    [18] Drenin AA, Botirov EK, Turov YP. Anew isoflavone glycoside from Trifolium pratense L.[J]. Russ J Bioorg Chem, 2011, 37(7): 862-865.
    [19] Ma XF, Tian XM, Chen YJ, et al.Flavonoid constituents of Astragalus membranaceus var. mongholicus[J].Chin Tradit Herb Drugs(中草药), 2005, 36(9): 1293-1296.
    [20] Fodja Saah EP, Sielinou VT, Kuete V, et al. Antimicrobial and antioxidant isoflavonoid derivatives from the roots of Amphimas pterocarpoides[J].Z. Naturforsch B, 2013, 68(b): 931-938.
    [21] Ji WL,Qin MJ,Wang ZT.Studies on the constituents of Belamcanda chinensis(Ⅰ)[J].J China Pharm Univ(中国药科大学学报), 2001, 32(3): 197-199.
    [22] Han LF, Zhao J, Zhang Y, et al. Chemical constituents from dried aerial parts of Eclipta prostrata[J]. Chin Herb Med, 2013, 5(4): 313-316.
    [23] Chen HQ, Jin ZY.Isolation, purification and structure identification of isoflavones from Trifolium pratense L.[J].Chin Tradit Herb Drugs(中草药), 2006(11): 1629-1631.
    [24] Shen H, Sun J, Zhao PJ, et al. Cytotoxic metabolites from the roots of ranunculus ternatus[J]. Chem Nat Compd, 2014, 50(4): 621-623.
    [25] Wang Q, Miao WJ, Xiang C, et al. Chemical constituents in flavonoids from root of Glycyrrhiza uralensis[J].Chin Tradit Herb Drugs(中草药), 2014, 45(1): 31-36.
    [26] Liao H, Zhang L, Jin C, et al. Chemical components from Millettia nitita var.hirsutissima[J].Chin J Exp Tradit Med Formulae(中国实验方剂学杂志), 2017, 23(16): 62-67.
    [27] Jiang KW, Pan B, Tian B. Recent taxonomic changes for Fabaceae (Leguminosae) genera in China[J].Bio Sci(生物多样性), 2019, 27(6): 689-697.
    [28] Xia Q, Wang WY, Tu TY, et al. Pollen morphology of Callerya Endl. and Millettia Wight et Arn. (Leguminosae) from China and its systematic implications[J].J Trop Subtrop Bot(热带亚热带植物学报), 2018, 26(5): 529-537.
  • 期刊类型引用(17)

    1. 孙佳乐,崔雅璇,张新征,李群. 无创正压通气与经鼻高流量氧疗治疗慢性阻塞性肺疾病急性加重期轻度呼吸衰竭患者的疗效观察. 实用医院临床杂志. 2024(01): 68-71 . 百度学术
    2. 卢丽君,田辉,郑洋,胡汉姣. 紫花牡荆素对脂多糖诱导的BEAS-2B细胞损伤和NF-κB-Keap1-Nrf2/ARE通路的影响. 中国免疫学杂志. 2024(03): 546-550 . 百度学术
    3. 黄武祯,陈斯宁,黎展华. 利金方治疗慢性阻塞性肺疾病的作用机制探析. 今日药学. 2024(08): 636-640 . 百度学术
    4. 薛晴,杨美玲,刘岩明. 比较不同剂量沙美特罗替卡松粉在治疗中重度稳定型慢性阻塞性肺疾病疗效. 罕少疾病杂志. 2024(10): 33-35 . 百度学术
    5. 赵萌,赵育周,赵志娟,霍树芬. T淋巴细胞亚群在慢性阻塞性肺疾病发生、发展中的作用研究进展. 检验医学与临床. 2023(05): 705-709 . 百度学术
    6. 葛进男,张晓风,葛蕾蕾,许晓霞. 早期肺康复对慢性阻塞性肺疾病急性加重期患者的影响. 当代护士(中旬刊). 2023(03): 27-30 . 百度学术
    7. 张文硕,吴常柱. 无创呼吸机联合沙丁胺醇治疗慢性阻塞性肺疾病并发呼吸衰竭的效果及对炎症因子的影响. 系统医学. 2023(06): 19-23 . 百度学术
    8. 郭春明,江露,范有明. 慢性阻塞性肺疾病中西医结合治疗研究进展. 中国药物经济学. 2023(07): 108-113 . 百度学术
    9. 冷安明,杨静,张葵. 桑色素通过抑制MMP9表达改善慢性阻塞性肺疾病. 安徽医科大学学报. 2023(12): 1987-1994 . 百度学术
    10. 刘海波,张敬敏,刘秀兰,王锋,刘明月,李建玲. 驱动压肺保护性通气策略对慢性阻塞性肺疾病大鼠呼吸功能和血液动力学的影响. 医学研究与战创伤救治. 2023(12): 1242-1249 . 百度学术
    11. 贾健,吴建兵,张奕华,黄张建. 羧甲司坦L-精氨酸盐的合成及其对支气管上皮细胞的保护作用. 中国药科大学学报. 2022(02): 171-177 . 本站查看
    12. 韩雪,王婷婷,王惠琴. 沙丁胺醇联合布地奈德雾化吸入对慢性阻塞性肺疾病急性加重期患者气道重塑、炎症介质水平的影响. 临床医学研究与实践. 2022(17): 70-74 . 百度学术
    13. 李明明,宋堃,王亚威. 基于PERMA模式的优质护理在老年慢阻肺患者中的应用观察. 包头医学. 2022(01): 54-56 . 百度学术
    14. 陈建平,黄坤,牛犇. Boehringer Ingelheim关于噻托溴铵的工艺研究进展. 化工管理. 2022(24): 65-67 . 百度学术
    15. 田晨,刘志辉,孟繁荣,李华,何湘蓉,胡锦兴. 香烟烟雾提取物诱导16HBE细胞MUC5AC上调的机制. 实用医学杂志. 2022(18): 2309-2317 . 百度学术
    16. 高文. 辛伐他汀与雷芬那辛治疗慢性阻塞性肺疾病临床疗效及对肺循环阻力的影响对比. 基层医学论坛. 2022(31): 35-38 . 百度学术
    17. 孙宁,于文晓,袁芳. 基于网络药理学和分子对接技术探讨桑梅止咳颗粒治疗COPD的作用机制. 湖南中医药大学学报. 2021(12): 1905-1913 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  191
  • HTML全文浏览量:  5
  • PDF下载量:  536
  • 被引次数: 32
出版历程
  • 收稿日期:  2020-09-24
  • 修回日期:  2021-04-02
  • 刊出日期:  2021-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭