高级检索

注射用脑蛋白水解物(Ⅱ)促进神经细胞轴突再生及其相关机制

Effects of cerebroprotein hydrolysate for injection (II) on neuritogenesis and its underlying mechanisms

  • 摘要: 大多数哺乳动物中枢神经系统疾病发生后神经细胞轴突受到损伤,由于受损的神经细胞促进轴突再生的能力有限,同时胶质疤痕的生成以及抑制性营养因子的释放,导致受损神经细胞轴突难以再生。为研究注射用脑蛋白水解物(Ⅱ)[cerebroprotein hydrolysate for injection (II),CBL]对神经细胞轴突再生的影响及其潜在的分子机制,采用免疫荧光染色检测小鼠脑神经瘤细胞(Neuro-2a)和小鼠原代皮层神经细胞的轴突长度;通过蛋白免疫印迹法检测Neuro-2a细胞和小鼠原代皮层神经细胞内磷酸化TrkB蛋白的表达水平。结果显示:CBL可以促进Neuro-2a细胞和小鼠原代皮层神经细胞的轴突再生,上调神经细胞内TrkB的磷酸化水平;5 μg/mL的CBL作用于神经细胞1 h,可以显著升高神经细胞内TrkB磷酸化水平。研究结果表明:CBL可以促进神经细胞轴突再生以及升高TrkB磷酸化水平,提示CBL促进神经细胞轴突再生的作用可能与激活TrkB信号通路有关。

     

    Abstract: In most mammalian central nervous system diseases, axons are damaged.Due to the limited ability of damaged neurons to promote axonal regeneration, the formation of glial scar and the release of inhibitory nutrients, it is difficult to regenerate axons of damaged neurons. The purpose of this study was to investigate the effect of cerebroprotein hydrolysate for injection (II) (CBL) on neuritogenesis and its underlying mechanism. Immunofluorescence staining was used to detect the axon length of mouse neuroma cells (Neuro-2a) and mouse primary cortical neuronal cells. Western blotting was used to detect the expression of phosphorylated TrkB protein in Neuro-2a cells and mouse primary cortical neuronal cells. The results showed that CBL could increase the axon length of Neuro-2a cells or mouse primary cortical neuronal cells, and that the phosphorylation level of TrkB in neuronal cells was significantly increased when 5 μg/mL CBL was applied to neuronal cells for 1 h. In conclusion, CBL can promote neuritogenesis, and increase the expression of phosphorylated TrkB, which may be related to the activation of TrkB signaling pathway.

     

/

返回文章
返回