• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于肿瘤相关巨噬细胞靶向调控的抗肿瘤策略

褚旭新, 卜凡雪, 殷婷婕, 霍美蓉

褚旭新, 卜凡雪, 殷婷婕, 霍美蓉. 基于肿瘤相关巨噬细胞靶向调控的抗肿瘤策略[J]. 中国药科大学学报, 2021, 52(3): 261-269. DOI: 10.11665/j.issn.1000-5048.20210301
引用本文: 褚旭新, 卜凡雪, 殷婷婕, 霍美蓉. 基于肿瘤相关巨噬细胞靶向调控的抗肿瘤策略[J]. 中国药科大学学报, 2021, 52(3): 261-269. DOI: 10.11665/j.issn.1000-5048.20210301
CHU Xuxin, BU Fanxue, YIN Tingjie, HUO Meirong. Antitumor strategies based on targeted modulation of tumor-associated macrophages[J]. Journal of China Pharmaceutical University, 2021, 52(3): 261-269. DOI: 10.11665/j.issn.1000-5048.20210301
Citation: CHU Xuxin, BU Fanxue, YIN Tingjie, HUO Meirong. Antitumor strategies based on targeted modulation of tumor-associated macrophages[J]. Journal of China Pharmaceutical University, 2021, 52(3): 261-269. DOI: 10.11665/j.issn.1000-5048.20210301

基于肿瘤相关巨噬细胞靶向调控的抗肿瘤策略

基金项目: 国家自然科学基金资助项目(No.82073175,No.81972835,No.81872424,No.81703442);江苏省“青蓝”工程资助项目

Antitumor strategies based on targeted modulation of tumor-associated macrophages

Funds: This work was supported by the National Natural Science Foundation of China (No.82073175, No.81972835, No.81872424, No.81703442) and Qing-Lan Project of Jiangsu Province
  • 摘要: 肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)是肿瘤中最丰富的固有免疫细胞,TAMs常表现出抗炎性M2表型,是肿瘤发展、转移和耐药性的关键诱导因素,已经成为肿瘤免疫治疗领域的热门靶标。纳米载体的研究与应用优化了以TAMs为靶点的肿瘤治疗策略,本文根据TAMs的特性与功能,详细阐述了基于TAMs的调控策略,包括TAMs耗竭、抑制TAMs募集和TAMs复极化;同时,为了更高效地应用上述策略并克服治疗中常见的脱靶问题,分析了基于纳米载体的TAMs特异性靶向治疗策略,包括被动靶向至TAMs、巨噬细胞主动靶向策略以及M2-TAMs特异性主动靶向策略;最后,针对单独靶向TAMs疗法的局限性,介绍了纳米递送系统同时靶向TAMs和肿瘤细胞的新型治疗策略,为该策略在肿瘤免疫治疗以及与其他疗法联合治疗中的应用提供新思路。
    Abstract: Tumor-associated macrophages (TAMs) are the most abundant innate immune cells in tumors, which generally exhibit anti-inflammatory M2 phenotypes, and are the key inducers of tumor development, metastasis and drug resistance, and thus becoming a popular target in the field of antitumor immunotherapy.The study and application of nanocarriers optimize TAMs-targeted antitumor therapy.According to the characteristics and functions of TAMs, modulation strategies based on TAMs are elaborated, including TAMs depletion, inhibition of TAMs recruitment and TAMs repolarization.At the same time, in order to apply the above strategies more efficiently and overcome the general off-target problems in treatment, specific TAMs-targeted therapies based on nanocarriers are reviewed and analyzed, including passive targeting to TAMs, active targeting to macrophages and specifically active targeting to M2-TAMs. Finally, based on the limitations of targeting TAMs alone, new therapeutic strategies of targeting both TAMs and tumor cells via nanocarrier based delivery systems are introduced to provide new ideas for the application of these strategies in the field of tumor immunotherapy and combination therapy with other antitumor strategies.
  • [1] . J China Pharm Univ(中国药科大学学报),2018,49(1):20-25.
    [2] Bian XJ,Xiao YT,Wu TQ,et al. Microvesicles and chemokines in tumor microenvironment:mediators of intercellular communications in tumor progression[J]. Mol Cancer,2019,18(1):50.
    [3] Brassart-Pasco S,Brézillon S,Brassart B,et al. Tumor microenvironment:extracellular matrix alterations influence tumor progression[J]. Front Oncol,2020,10:397.
    [4] Novikova MV,Khromova NV,Kopnin PB. Components of the hepatocellular carcinoma microenvironment and their role in tumor progression[J]. Biochemistry (Mosc),2017,82(8):861-873.
    [5] Dehne N,Mora J,Namgaladze D,et al. Cancer cell and macrophage cross-talk in the tumor microenvironment[J]. Curr Opin Pharmacol,2017,35:12-19.
    [6] Bi L,Gao J,Jiang YC,et al. Effect of Ginseng,Ginseng polysaccharides and Ginsenoside on the human lung cancer cells A549 in co-culture system of TAMs with A549 cells[J]. J China Pharm Univ(中国药科大学学报),2016,47(6):744-748.
    [7] Yang L,Zhang Y. Tumor-associated macrophages:from basic research to clinical application[J]. J Hematol Oncol,2017,10(1):58.
    [8] Jeannin P,Paolini L,Adam C,et al. The roles of CSFs on the functional polarization of tumor-associated macrophages[J]. FEBS J,2018,285(4):680-699.
    [9] Jayasingam SD,Citartan M,Thang TH,et al. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue:technicalities and challenges in routine clinical practice[J]. Front Oncol,2019,9:1512.
    [10] Binnemars-Postma K,Storm G,Prakash J. Nanomedicine strategies to target tumor-associated macrophages[J]. Int J Mol Sci,2017,18(5):E979.
    [11] Petty AJ,Yang YP. Tumor-associated macrophages:implications in cancer immunotherapy[J]. Immunotherapy,2017,9(3):289-302.
    [12] Chen XJ,Wu S,Yan RM,et al. The role of the hypoxia-Nrp-1 axis in the activation of M2-like tumor-associated macrophages in the tumor microenvironment of cervical cancer[J]. Mol Carcinog,2019,58(3):388-397.
    [13] Lin YX,Xu JX,Lan HY. Tumor-associated macrophages in tumor metastasis:biological roles and clinical therapeutic applications[J]. J Hematol Oncol,2019,12(1):76.
    [14] Chen YB,Song YC,Du W,et al. Tumor-associated macrophages:an accomplice in solid tumor progression[J]. J Biomed Sci,2019,26(1):78.
    [15] Laviron M,Boissonnas A. Ontogeny of tumor-associated macrophages[J]. Front Immunol,2019,10:1799.
    [16] Malfitano AM,Pisanti S,Napolitano F,et al. Tumor-associated macrophage status in cancer treatment[J]. Cancers,2020,12(7):1987.
    [17] Cui Y,Guo G. Immunomodulatory function of the tumor suppressor p53 in host immune response and the tumor microenvironment[J]. Int J Mol Sci,2016,17(11):1942.
    [18] Cassetta L,Pollard JW. Targeting macrophages:therapeutic approaches in cancer[J]. Nat Rev Drug Discov,2018,17(12):887-904.
    [19] Li X,Liu R,Su X,et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy[J]. Mol Cancer,2019,18(1):177.
    [20] O'Brien SA,Orf J,Skrzypczynska KM,et al. Activity of tumor-associated macrophage depletion by CSF1R blockade is highly dependent on the tumor model and timing of treatment[J]. Cancer Immunol Immunother,2021. doi:10.1007/s00262-021-02861-3.
    [21] Cannarile MA,Weisser M,Jacob W,et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy[J]. J Immunother Cancer,2017,5(1):53.
    [22] Ries CH,Cannarile MA,Hoves S,et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy[J]. Cancer Cell,2014,25(6):846-859.
    [23] Billington EO,Reid IR. Benefits of bisphosphonate therapy:beyond the skeleton[J]. Curr Osteoporos Rep,2020,18(5):587-596.
    [24] Andón FT,Digifico E,Maeda A,et al. Targeting tumor associated macrophages:The new challenge for nanomedicine[J]. Semin Immunol,2017,34:103-113.
    [25] Phuengkham H,Ren L,Shin IW,et al. Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy[J]. Adv Mater,2019,31(34):e1803322.
    [26] Singh Y,Pawar VK,Meher JG,et al. Targeting tumor associated macrophages (TAMs) via nanocarriers[J]. J Control Release,2017,254:92-106.
    [27] Ngambenjawong C,Gustafson HH,Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics[J]. Adv Drug Deliv Rev,2017,114:206-221.
    [28] Zang X,Zhang X,Hu H,et al. Targeted delivery of zoledronate to tumor-associated macrophages for cancer immunotherapy[J]. Mol Pharm,2019,16(5):2249-2258.
    [29] Goswami KK,Ghosh T,Ghosh S,et al. Tumor promoting role of anti-tumor macrophages in tumor microenvironment[J]. Cell Immunol,2017,316:1-10.
    [30] Argyle D,Kitamura T. Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors[J]. Front Immunol,2018,9:2629.
    [31] Nywening TM,Wang-Gillam A,Sanford DE,et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer:a single-centre,open-label,dose-finding,non-randomised,phase 1b trial[J]. Lancet Oncol,2016,17(5):651-662.
    [32] Shapouri-Moghaddam A,Mohammadian S,Vazini H,et al. Macrophage plasticity,polarization,and function in health and disease[J]. J Cell Physiol,2018,233(9):6425-6440.
    [33] Ruytinx P,Proost P,van Damme J,et al. Chemokine-induced macrophage polarization in inflammatory conditions[J]. Front Immunol,2018,9:1930.
    [34] Pathria P,Louis TL,Varner JA. Targeting tumor-associated macrophages in cancer[J]. Trends Immunol,2019,40(4):310-327.
    [35] Veillette A,Chen J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy[J]. Trends Immunol,2018,39(3):173-184.
    [36] Weiskopf K,Jahchan NS,Schnorr PJ,et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer[J]. J Clin Invest,2016,126(7):2610-2620.
    [37] Feng Y,Mu R,Wang Z,et al. A toll-like receptor agonist mimicking microbial signal to generate tumor-suppressive macrophages[J]. Nat Commun,2019,10(1):2272.
    [38] Rodríguez-Ruiz ME,Perez-Gracia JL,Rodríguez I,et al. Combined immunotherapy encompassing intratumoral poly-ICLC,dendritic-cell vaccination and radiotherapy in advanced cancer patients[J]. Ann Oncol,2018,29(5):1312-1319.
    [39] Georgoudaki AM,Prokopec KE,Boura VF,et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis[J]. Cell Rep,2016,15(9):2000-2011.
    [40] Locatelli SL,Careddu G,Serio S,et al. Targeting cancer cells and tumor microenvironment in preclinical and clinical models of Hodgkin lymphoma using the dual PI3Kδ/γ inhibitor RP6530[J]. Clin Cancer Res,2019,25(3):1098-1112.
    [41] Guerriero JL,Sotayo A,Ponichtera HE,et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages[J]. Nature,2017,543(7645):428-432.
    [42] Chen Q,Wang C,Zhang X,et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment[J]. Nat Nanotechnol,2019,14(1):89-97.
    [43] Song K,Pan H,Han JY,et al. Nano drug delivery system based strategies to target tumor microenvironment[J]. J China Pharm Univ(中国药科大学学报),2018,49(4):392-400.
    [44] Dai W,Wang X,Song G,et al. Combination antitumor therapy with targeted dual-nanomedicines[J]. Adv Drug Deliv Rev,2017,115:23-45.
    [45] La-Beck NM,Liu XL,Shmeeda H,et al. Repurposing amino-bisphosphonates by liposome formulation for a new role in cancer treatment[J]. Semin Cancer Biol,2021,68:175-185.
    [46] Wakaska RR. Challenges pertaining to adverse effects of drugs[J]. Int J Drug Dev Res,2017,9(1):1-2.
    [47] An YY,Yang Q. Tumor-associated macrophage-targeted therapeutics in ovarian cancer[J]. Int J Cancer,2020. doi:10.1002/ijc.33408.
    [48] Zang XL,Zhang XX,Zhao XL,et al. Targeted delivery of miRNA 155 to tumor associated macrophages for tumor immunotherapy[J]. Mol Pharm,2019,16(4):1714-1722.
    [49] Sun X,Gao D,Gao L,et al. Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer[J]. Theranostics,2015,5(6):597-608.
    [50] Tie Y,Zheng H,He ZY,et al. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex[J]. Signal Transduct Target Ther,2020,5(1):6.
    [51] Hattori Y,Yamashita J,Sakaida C,et al. Evaluation of antitumor effect of zoledronic acid entrapped in folate-linked liposome for targeting to tumor-associated macrophages[J]. J Liposome Res,2015,25(2):131-140.
    [52] Weiskopf K,Anderson KL,Ito D,et al. Eradication of canine diffuse large B-cell lymphoma in a murine xenograft model with CD47 blockade and anti-CD20[J]. Cancer Immunol Res,2016,4(12):1072-1087.
    [53] Franklin RA,Liao W,Sarkar A,et al. The cellular and molecular origin of tumor-associated macrophages[J]. Science,2014,344(6186):921-925.
    [54] Lin Y,Wei C,Liu Y,et al. Selective ablation of tumor-associated macrophages suppresses metastasis and angiogenesis[J]. Cancer Sci,2013,104(9):1217-1225.
    [55] Kang T,Jiang MY,Jiang D,et al. Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex[J]. Mol Pharm,2015,12(8):2947-2961.
    [56] Qian Y,Qiao S,Dai YF,et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages[J]. ACS Nano,2017,11(9):9536-9549.
    [57] Peng H,Wang JH,Guo F,et al. Legumain protease-activated tuftsin-functionalized nanoparticles for dual-targeting TAMs and cancer chemotherapy[J]. Colloids Surf B Biointerfaces,2021,197:111442.
    [58] Cieslewicz M,Tang JJ,Yu JL,et al. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival[J]. Proc Natl Acad Sci U S A,2013,110(40):15919-15924.
    [59] Pang L,Pei YH,Uzunalli G,et al. Surface modification of polymeric nanoparticles with M2pep peptide for drug delivery to tumor-associated macrophages[J]. Pharm Res,2019,36(4):65.
    [60] Brahmer JR,Tykodi SS,Chow LQ,et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med,2012,366(26):2455-2465.
    [61] Wu XL,Wu YD,Ye HB,et al. Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy[J]. J Control Release,2017,255:81-93.
    [62] Chen J,Dou Y,Tang Y,et al. Folate receptor-targeted RNAi nanoparticles for silencing STAT3 in tumor-associated macrophages and tumor cells[J]. Nanomedicine,2020,25:102173.
    [63] Conde J,Bao CC,Tan YQ,et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells[J]. Adv Funct Mater,2015,25(27):4183-4194.
    [64] Sylvestre M,Crane CA,Pun SH. Progress on modulating tumor-associated macrophages with biomaterials[J]. Adv Mater,2020,32(13):e1902007.
    [65] Yang QY,Guo NN,Zhou Y,et al. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy[J]. Acta Pharm Sin B,2020,10(11):2156-2170.
  • 期刊类型引用(1)

    1. 金瑞,闫若凝,陆宇婷,宋敏,杭太俊. 色谱-质谱联用技术鉴定盐酸咪达唑仑的有关物质. 中国药科大学学报. 2020(03): 313-326 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-03-06
  • 修回日期:  2021-04-29
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭