• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于p53信号转导网络数学模型研究热疗联合放疗在肿瘤治疗中的协同效应

孙廷哲

孙廷哲. 基于p53信号转导网络数学模型研究热疗联合放疗在肿瘤治疗中的协同效应[J]. 中国药科大学学报, 2021, 52(3): 361-370. DOI: 10.11665/j.issn.1000-5048.20210314
引用本文: 孙廷哲. 基于p53信号转导网络数学模型研究热疗联合放疗在肿瘤治疗中的协同效应[J]. 中国药科大学学报, 2021, 52(3): 361-370. DOI: 10.11665/j.issn.1000-5048.20210314
SUN Tingzhe. Mathematical modeling of the synergy between hyperthermia and radiotherapy in tumor treatment based on p53 signaling network[J]. Journal of China Pharmaceutical University, 2021, 52(3): 361-370. DOI: 10.11665/j.issn.1000-5048.20210314
Citation: SUN Tingzhe. Mathematical modeling of the synergy between hyperthermia and radiotherapy in tumor treatment based on p53 signaling network[J]. Journal of China Pharmaceutical University, 2021, 52(3): 361-370. DOI: 10.11665/j.issn.1000-5048.20210314

基于p53信号转导网络数学模型研究热疗联合放疗在肿瘤治疗中的协同效应

基金项目: 国家自然科学基金资助项目(No.31971185);安徽省高校优秀青年人才支持计划重点资助项目(No.gxyqZD2020031)

Mathematical modeling of the synergy between hyperthermia and radiotherapy in tumor treatment based on p53 signaling network

Funds: This study was supported by the National Natural Science Foundation of China (No.31971185) and the Key Projects for Outstanding Young Talents in Colleges and Universities of Anhui Province (No.gxyqZD2020031)
  • 摘要: 基于p53信号转导网络数学模型研究温度和辐射在调控p53动力学行为过程中的协同效应。利用时滞微分方程构建p53动力学模型,使用加速τ-leap算法进行随机模拟分析,采用Loewe和Bliss协同指数计算协同性,用MATLAB软件进行数值模拟。结果显示,在较低温下,p53脉冲的振幅和特征基音随温度发生转变。p53脉冲的振幅和周期具有较大的变异性。在39 ℃以下,p53首个脉冲的振幅随温度升高而增加,而p53的特征基音则随着温度升高而降低。较温和的高温环境(≥41 ℃)则破坏了p53脉冲,p53蛋白水平呈现持续累积。随着温度的升高,自相关图谱中的周期行为逐渐消失。以p53的累积值和最大值作为评价指标,温度和辐射剂量可产生显著的协同作用。另外,温度对p53动力学的影响是可逆的。总之,温度可显著影响p53的动力学特征。在肿瘤治疗中,热疗亦可为放疗提供有益的帮助。
    Abstract: The aim of the current study was to investigate the synergistic effect between temperature and irradiation on p53 dynamics using mathematical model in p53 signaling pathway.Delayed differential equations were used to construct the dynamic p53 model. The accelerated τ-leap stochastic simulation algorithm was used to analyze the stochastic behavior.Loewe and Bliss combination indexes were used to calculate the synergy. Numerical simulations were performed in MATLAB software. Results showed that at relatively lower temperatures, the amplitude and characteristic pitch of p53 pulses varied with changing temperatures.The amplitude and duration of p53 pulses were highly variable. At temperatures below 39 °C, the amplitude of the first p53 pulse was increased when temperature was elevated, whereas the characteristic pitch of p53 pulses was decreased with increasing temperature.Under mild hyperthermia (≥ 41 °C), p53 pulses were disrupted and p53 proteins became steadily accumulated.The patterns of periodicity in auto-correlation plot gradually vanished when the temperature was increased. With the metrics of cumulative and maximal p53 levels, there existed notable synergistic effects between the temperature and irradiation doses. In addition, the effect of temperature on p53 dynamics was reversible.To sum up, temperature could significantly affect dynamic p53 patterns.Radiotherapy may also benefit from hyperthermia in tumor treatment.
  • [1] . Proc Natl Acad Sci U S A,1957,43(9):804-811.
    [2] Harper CV,Woodcock DJ,Lam C,et al. Temperature regulates NF-κB dynamics and function through timing of A20 transcription[J]. Proc Natl Acad Sci U S A,2018,115(22):E5243-E5249.
    [3] Jentsch M,Snyder P,Sheng CB,et al. p53 dynamics in single cells are temperature-sensitive[J]. Sci Rep,2020,10(1):1481.
    [4] Batchelor E,Loewer A. Recent progress and open challenges in modeling p53 dynamics in single cells[J]. Curr Opin Syst Biol,2017,3:54-59.
    [5] Bieging KT,Mello SS,Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression[J]. Nat Rev Cancer,2014,14(5):359-370.
    [6] Wu X,Bayle JH,Olson D,et al. The p53-mdm-2 autoregulatory feedback loop[J]. Genes Dev,1993,7(7a):1126-1132.
    [7] Batchelor E,Mock CS,Bhan I,et al. Recurrent initiation:a mechanism for triggering p53 pulses in response to DNA damage[J]. Mol Cell,2008,30(3):277-289.
    [8] Marcel V,van Long FN,Diaz JJ. 40 years of research put p53 in translation[J]. Cancers,2018,10(5):152.
    [9] Tang QS,Su ZY,Gu W,et al. Mutant p53 on the path to metastasis[J]. Trends Cancer,2020,6(1):62-73.
    [10] Gurpinar E,Vousden KH. Hitting cancers'' weak spots:vulnerabilities imposed by p53 mutation[J]. Trends Cell Biol,2015,25(8):486-495.
    [11] Sund-Levander M,Forsberg C,Wahren LK. Normal oral,rectal,tympanic and axillary body temperature in adult men and women:a systematic literature review[J]. Scand J Caring Sci,2002,16(2):122-128.
    [12] Byrne C,Lim CL. The ingestible telemetric body core temperature sensor:a review of validity and exercise applications[J]. Br J Sports Med,2007,41(3):126-133.
    [13] Guilherme L,Kalil J. Rheumatic fever and rheumatic heart disease:cellular mechanisms leading autoimmune reactivity and disease[J]. J Clin Immunol,2010,30(1):17-23.
    [14] ó’Fágáin C. Enzyme stabilization—recent experimental progress[J]. Enzym Microb Technol,2003,33(2/3):137-149.
    [15] Pelaez F,Manuchehrabadi N,Roy P,et al. Biomaterial scaffolds for non-invasive focal hyperthermia as a potential tool to ablate metastatic cancer cells[J]. Biomaterials,2018,166:27-37.
    [16] Sun TZ,Cui J. A plausible model for bimodal p53 switch in DNA damage response[J]. FEBS Lett,2014,588(5):815-821.
    [17] Tanaka T,Halicka HD,Traganos F,et al. Induction of ATM activation,histone H2AX phosphorylation and apoptosis by etoposide:relation to cell cycle phase[J]. Cell Cycle,2007,6(3):371-376.
    [18] Hirai Y,Hayashi T,Kubo Y,et al. X-irradiation induces up-regulation of ATM gene expression in wild-type lymphoblastoid cell lines,but not in their heterozygous or homozygous Ataxia-telangiectasia counterparts[J]. Jpn J Cancer Res,2001,92(6):710-717.
    [19] Hafner A,Bulyk ML,Jambhekar A,et al. The multiple mechanisms that regulate p53 activity and cell fate[J]. Nat Rev Mol Cell Biol,2019,20(4):199-210.
    [20] Walerych D,Olszewski MB,Gutkowska M,et al. Hsp70 molecular chaperones are required to support p53 tumor suppressor activity under stress conditions[J]. Oncogene,2009,28(48):4284-4294.
    [21] Arrhenius S. über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch S?uren[J]. Z Physik Chem,1889,4:226-248.
    [22] Gajjar M,Candeias MM,Malbert-Colas L,et al. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage[J]. Cancer Cell,2012,21(1):25-35.
    [23] Chatterjee A,Vlachos DG,Katsoulakis MA. Binomial distribution based tau-leap accelerated stochastic simulation[J]. J Chem Phys,2005,122(2):024112.
    [24] Foucquier J,Guedj M. Analysis of drug combinations:current methodological landscape[J]. Pharmacol Res Perspect,2015,3(3):e00149.
    [25] Hsing A,Faller DV,Vaziri C. DNA-damaging aryl hydrocarbons induce Mdm2 expression via p53-independent post-transcriptional mechanisms[J]. J Biol Chem,2000,275(34):26024-26031.
    [26] Ju J,Schmitz JC,Song B,et al. Regulation of p53 expression in response to 5-fluorouracil in human cancer RKO cells[J]. Clin Cancer Res,2007,13(14):4245-4251.
    [27] Mayo LD,Dixon JE,Durden DL,et al. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy[J]. J Biol Chem,2002,277(7):5484-5489.
    [28] Rossi M,Demidov ON,Anderson CW,et al. Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites[J]. Nucleic Acids Res,2008,36(22):7168-7180.
    [29] Ma L,Wagner J,Rice JJ,et al. A plausible model for the digital response of p53 to DNA damage[J]. Proc Natl Acad Sci U S A,2005,102(40):14266-14271.
    [30] Vilenchik MM,Knudson AG. Endogenous DNA double-strand breaks:production,fidelity of repair,and induction of cancer[J]. Proc Natl Acad Sci U S A,2003,100(22):12871-12876.
    [31] M?nke G,Cristiano E,Finzel A,et al. Excitability in the p53 network mediates robust signaling with tunable activation thresholds in single cells[J]. Sci Rep,2017,7:46571.
    [32] Harton MD,Koh WS,Bunker AD,et al. p53 pulse modulation differentially regulates target gene promoters to regulate cell fate decisions[J]. Mol Syst Biol,2019,15(9):e8685.
    [33] Chen X,Chen J,Gan ST,et al. DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control[J]. BMC Biol,2013,11:73.
    [34] Yang RZ,Huang B,Zhu YT,et al. Cell type-dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance[J]. Sci Adv,2018,4(12):eaat5077.
    [35] Purvis JE,Karhohs KW,Mock C,et al. p53 dynamics control cell fate[J]. Science,2012,336(6087):1440-1444.
    [36] Soares PI,Ferreira IM,Igreja RA,et al. Application of hyperthermia for cancer treatment:recent patents review[J]. Recent Pat Anticancer Drug Discov,2012,7(1):64-73.
    [37] Ohnstad HO,Castro R,Sun JC,et al. Correlation of TP53 and MDM2 genotypes with response to therapy in sarcoma[J]. Cancer,2013,119(5):1013-1022.
    [38] Keizer EM,Bastian B,Smith RW,et al. Extending the linear-noise approximation to biochemical systems influenced by intrinsic noise and slow lognormally distributed extrinsic noise[J]. Phys Rev E,2019,99(5-1):052417.
计量
  • 文章访问数:  166
  • HTML全文浏览量:  11
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-06
  • 修回日期:  2021-05-30
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭