高级检索

c-Myc调控肿瘤代谢作用机制的研究进展

刘雅惠, 高露, 王亚菁, 严方

刘雅惠, 高露, 王亚菁, 严方. c-Myc调控肿瘤代谢作用机制的研究进展[J]. 中国药科大学学报, 2021, 52(3): 379-386. DOI: 10.11665/j.issn.1000-5048.20210316
引用本文: 刘雅惠, 高露, 王亚菁, 严方. c-Myc调控肿瘤代谢作用机制的研究进展[J]. 中国药科大学学报, 2021, 52(3): 379-386. DOI: 10.11665/j.issn.1000-5048.20210316
LIU Yahui, GAO Lu, WANG Yajing, YAN Fang. Advances in the research on mechanism of tumor metabolism regulated by c-Myc[J]. Journal of China Pharmaceutical University, 2021, 52(3): 379-386. DOI: 10.11665/j.issn.1000-5048.20210316
Citation: LIU Yahui, GAO Lu, WANG Yajing, YAN Fang. Advances in the research on mechanism of tumor metabolism regulated by c-Myc[J]. Journal of China Pharmaceutical University, 2021, 52(3): 379-386. DOI: 10.11665/j.issn.1000-5048.20210316

c-Myc调控肿瘤代谢作用机制的研究进展

Advances in the research on mechanism of tumor metabolism regulated by c-Myc

  • 摘要: 转录因子c-Myc广泛参与了正常细胞的增殖、分化和代谢等关键进程,在大多数肿瘤中,MYC原癌基因异常激活,过量表达的c-Myc蛋白可以直接调控关键代谢酶的表达,或通过抑制microRNA间接调控肿瘤相关的代谢通路,表现出营养吸收增加、糖酵解和谷氨酰胺代谢增强、脂肪酸和核苷酸合成增加等代谢失调特征。本文从c-Myc蛋白调控肿瘤糖酵解、谷氨酰胺代谢、三羧酸循环、脂质代谢及核苷酸代谢等研究进展进行综述,为研发靶向c-Myc的抗肿瘤靶点及药物提供理论参考。
    Abstract: The transcription factor c-Myc regulates the proliferation, differentiation, metabolism and other key processes of normal cells extensively.The unleashed MYC oncogene frequently produces abundant c-Myc protein, which directly regulates the gene expression of key metabolic enzymes, or tumor-related metabolic pathways by inhibiting microRNA, leading to abnormal metabolism characterized by heightened nutrients uptake, enhanced glycolysis and glutaminolysis, and elevated fatty acid and nucleotide synthesis.This paper briefly summarizes how c-Myc regulated metabolism on glycolysis, glutamine metabolism, tricarboxylic acid cycle, lipid metabolism and nucleotide synthesis in cancer cell,which provides some theoretical reference for the development of antitumor targets and drugs involving c-Myc.
  • [1] . Cell,2012,149(1):22-35.
    [2] Annibali D,Whitfield JR,Favuzzi E,et al. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis[J]. Nat Commun,2014,5:4632.
    [3] Li ST,Huang,Shen S,et al. Myc-mediated SDHA acetylation triggers epigenetic regulation of gene expression and tumorigenesis[J]. Nat Metab,2020,2(3):256-269.
    [4] Faubert B,Solmonson A,DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science,2020,368(6487):5473.
    [5] Kim JW,Zeller KI,Wang YY,et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays[J]. Mol Cell Biol,2004,24(13):5923-5936.
    [6] Liberti MV,Locasale JW. The Warburg effect:how does it benefit cancer cells[J]?Trends Biochem Sci,2016,41(3):211-218.
    [7] Edmunds LR,Sharma L,Kang A,et al. C-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate[J]. J Biol Chem,2015,290(33):20100.
    [8] Cunningham JT,Moreno MV,Lodi A,et al. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme,PRPS2,to drive cancer[J]. Cell,2014,157(5):1088-1103.
    [9] Davidson SM,Papagiannakopoulos T,Olenchock BA,et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer[J]. Cell Metab,2016,23(3):517-528.
    [10] Mayers JR,Vander Heiden MG. Nature and nurture:what determines tumor metabolic phenotypes[J]?Cancer Res,2017,77(12):3131-3134.
    [11] Carroll PA,Diolaiti D,McFerrin L,et al. Deregulated Myc requires MondoA/MLx for metabolic reprogramming and tumorigenesis[J]. Cancer Cell,2015,27(2):271-285.
    [12] Nair SK,Burley SK. X-ray structures of myc-max and mad-max recognizing DNA - molecular bases of regulation by proto-oncogenic transcription factors[J]. Cell,2003,112(2):193-205.
    [13] Dang CV. Gene regulation:fine-tuned amplification in cells[J]. Nature,2014,511(7510):417-418.
    [14] Sabò A,Kress TR,Pelizzola M,et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis[J]. Nature,2014,511(7510):488-492.
    [15] Walz S,Lorenzin F,Morton J,et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles[J]. Nature,2014,511(7510):483-487.
    [16] Macek P,Cliff MJ,Embrey KJ,et al. Myc phosphorylation in its basic helix-loop-helix region destabilizes transient α-helical structures,disrupting Max and DNA binding[J]. J Biol Chem,2018,293(24):9301-9310.
    [17] Zhou W,Liotta LA,Petricoin EF. The Warburg effect and mass spectrometry-based proteomic analysis[J]. Cancer Genom Proteom,2017,14(4):211-218.
    [18] Gao Q,Zhu HW,Dong LQ,et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell,2019,179(2):561-577.
    [19] Ananieva E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response[J]. World J Biol Chem,2015,6(4):281-289.
    [20] Gentric G,Mieulet V,Mechta-Grigoriou F. Heterogeneity in cancer metabolism:new concepts in an old field[J]. Antioxid Redox Signal,2017,26(9):462-485.
    [21] Coller HA. MYC sets a tumour-stroma metabolic loop[J]. Nat Cell Biol,2018,20(5):506-507.
    [22] Yan W,Wu X,Zhou W,et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells[J]. Nat Cell Biol,2018,20(5):597-609.
    [23] San-Millán I,Brooks GA. Reexamining cancer metabolism:lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect[J]. Carcinogenesis,2017,38(2):119-133.
    [24] Wise DR,DeBerardinis RJ,Mancuso A,et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction[J]. Proc Natl Acad Sci U S A,2008,105(48):18782-18787.
    [25] Shen LL,O''Shea JM,Kaadige MR,et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP[J]. Proc Natl Acad Sci U S A,2015,112(17):5425-5430.
    [26] Israelsen WJ,Vander Heiden MG. Pyruvate kinase:Function,regulation and role in cancer[J]. Semin Cell Dev Biol,2015,43:43-51.
    [27] Patra KC,Hay N. The pentose phosphate pathway and cancer[J]. Trends Biochem Sci,2014,39(8):347-354.
    [28] Morrish F,Noonan J,Perez-Olsen C,et al. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry[J]. J Biol Chem,2010,285(47):36267-36274.
    [29] Wang RN,Dillon CP,Shi LZ,et al. The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation[J]. Immunity,2011,35(6):871-882.
    [30] Yang M,Vousden KH. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer,2016,16(10):650-662.
    [31] Anderton B,Camarda R,Balakrishnan S,et al. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer[J]. EMBO Rep,2017,18(4):569-585.
    [32] Sun LC,Song LB,Wan QF,et al. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions[J]. Cell Res,2015,25(4):429-444.
    [33] Still ER,Yuneva MO. Hopefully devoted to Q:targeting glutamine addiction in cancer[J]. Br J Cancer,2017,116(11):1375-1381.
    [34] Bhutia YD,Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer[J]. Biochim Biophys Acta,2016,1863(10):2531-2539.
    [35] Qing GL,Li B,Vu A,et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation[J]. Cancer Cell,2012,22(5):631-644.
    [36] Gao P,Tchernyshyov I,Chang TC,et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature,2009,458(7239):762-765.
    [37] Csibi A,Lee G,Yoon SO,et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation[J]. Curr Biol,2014,24(19):2274-2280.
    [38] Shroff EH,Eberlin LS,Dang VM,et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism[J]. Proc Natl Acad Sci U S A,2015,112(21):6539-6544.
    [39] Korangath P,Teo WW,Sadik H,et al. Targeting glutamine metabolism in breast cancer with aminooxyacetate[J]. Clin Cancer Res,2015,21(14):3263-3273.
    [40] Liu W,Hancock CN,Fischer JW,et al. Proline biosynthesis augments tumor cell growth and aerobic glycolysis:involvement of pyridine nucleotides[J]. Sci Rep,2015,5:17206.
    [41] Yuneva MO,Fan TW,Allen TD,et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type[J]. Cell Metab,2012,15(2):157-170.
    [42] Bott AJ,Peng IC,Fan YJ,et al. Oncogenic myc induces expression of glutamine synthetase through promoter demethylation[J]. Cell Metab,2015,22(6):1068-1077.
    [43] Dejure FR,Eilers M. MYC and tumor metabolism:chicken and egg[J]. EMBO J,2017,36(23):3409-3420.
    [44] Ma XX,Chong L,Tian R,et al. Identification and quantitation of lipid C=C location isomers:a shotgun lipidomics approach enabled by photochemical reaction[J]. Proc Natl Acad Sci U S A,2016,113(10):2573-2578.
    [45] DeBerardinis RJ,Chandel NS. Fundamentals of cancer metabolism[J]. Sci Adv,2016,2(5):e1600200.
    [46] Keckesova Z,Donaher JL,de Cock J,et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state[J]. Nature,2017,543(7647):681-686.
    [47] Pascual G,Avgustinova A,Mejetta S,et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature,2017,541(7635):41-45.
    [48] Tadros S,Shukla SK,King RJ,et al. De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic Reticulum stress in pancreatic cancer[J]. Cancer Res,2017,77(20):5503-5517.
    [49] Jeon SM,Chandel NS,Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress[J]. Nature,2012,485(7400):661-665.
    [50] Gouw AM,Margulis K,Liu NS,et al. The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth[J]. Cell Metab,2019,30(3):556-572.
    [51] Casciano JC,Perry C,Cohen-Nowak AJ,et al. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer[J]. Br J Cancer,2020,122(6):868-884.
    [52] Zhong CX,Fan LM,Yao F,et al. HMGCR is necessary for the tumorigenecity of esophageal squamous cell carcinoma and is regulated by Myc[J]. Tumour Biol,2014,35(5):4123-4129.
    [53] Leone RD,Powell JD. Metabolism of immune cells in cancer[J]. Nat Rev Cancer,2020,20(9):516-531.
    [54] Ferrer CM,Sodi VL,Reginato MJ. O-GlcNAcylation in cancer biology:linking metabolism and signaling[J]. J Mol Biol,2016,428(16):3282-3294.
    [55] Sodi VL,Khaku S,Krutilina R,et al. mTOR/MYC axis regulates O-GlcNAc transferase expression and O-GlcNAcylation in breast cancer[J]. Mol Cancer Res,2015,13(5):923-933.
    [56] Zeng Q,Zhao RX,Chen J,et al. O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis[J]. Proc Natl Acad Sci U S A,2016,113(33):9333-9338.
    [57] Li T,Song L,Zhang Y,et al. Molecular mechanism of c-Myc and PRPS1/2 against thiopurine resistance in Burkitt''s lymphoma[J]. J Cell Mol Med,2020,24(12):6704-6715.
    [58] Restelli V,Lupi M,Chilà R,et al. DNA damage response inhibitor combinations exert synergistic antitumor activity in aggressive B-cell lymphomas[J]. Mol Cancer Ther,2019,18(7):1255-1264.
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  61
  • PDF下载量:  1478
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-04-27
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭