• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

多肽色谱保留预测及其在蛋白质组学中的应用

陈可, 李翠翠, 李博

陈可, 李翠翠, 李博. 多肽色谱保留预测及其在蛋白质组学中的应用[J]. 中国药科大学学报, 2021, 52(4): 422-430. DOI: 10.11665/j.issn.1000-5048.20210404
引用本文: 陈可, 李翠翠, 李博. 多肽色谱保留预测及其在蛋白质组学中的应用[J]. 中国药科大学学报, 2021, 52(4): 422-430. DOI: 10.11665/j.issn.1000-5048.20210404
CHEN Ke, LI Cuicui, LI Bo. Peptide retention prediction algorithm and its application in proteomics[J]. Journal of China Pharmaceutical University, 2021, 52(4): 422-430. DOI: 10.11665/j.issn.1000-5048.20210404
Citation: CHEN Ke, LI Cuicui, LI Bo. Peptide retention prediction algorithm and its application in proteomics[J]. Journal of China Pharmaceutical University, 2021, 52(4): 422-430. DOI: 10.11665/j.issn.1000-5048.20210404

多肽色谱保留预测及其在蛋白质组学中的应用

Peptide retention prediction algorithm and its application in proteomics

  • 摘要: 基于串联质谱的蛋白质组学分析方法往往依赖于实际谱图和理论谱图的匹配打分,而大量共洗脱肽的干扰会降低多肽和蛋白的鉴定及定量的准确性。多肽保留时间预测可将多肽色谱保留行为转变为稳定独立的特征时间属性,作为多肽鉴定的辅助和验证指标,改善多肽鉴定的准确性。复杂体系中多肽色谱保留预测也对优化蛋白质组学测定条件、提高数据非依赖采集中质谱数据的检出率和重复性具有重要意义。本文针对未修饰多肽及修饰多肽常用的色谱保留预测方法(包括基于标准化索引、多肽分子模型、氨基酸残基参数和机器学习等)进行了综述,总结各种方法的原理及其特点,并对其在蛋白质组学中的应用及发展方向进行了展望。
    Abstract: Most of the proteomics analysis methods based on tandem mass spectrometry rely on the matching scoring of actual spectrum and theoretical spectrum, the interference of a large number of co-eluting peptides could cause error in the identification and quantification of peptides and proteins. Peptide retention time prediction, as a auxiliary and verification index of the peptide, can transition the chromatographic behavior into stable independent time attributes, and improve the accuracy of the peptide identification. Prediction of peptide chromatographic retention in complex systems is also of great significance for optimizing proteomics determination conditions and improving the detection rate and repeatability of mass spectrometry data in data-independent acquisition. This review focused on the chromatographic retention prediction method of unmodified peptides and modified peptides, summarizes the content, characteristics and limitations of four types of peptide retention time prediction methods based on standardized indexes, peptide molecular models, amino acid residue parameters, and machine learning, as well as their applications in proteomics, with a prospect of their future.
  • [1] . Methods Mol Biol,2020,2051:115-132.
    [2] Dorfer V,Maltsev S,Winkler S,et al. CharmeRT:boosting peptide identifications by chimeric spectra identification and retention time prediction[J]. J Proteome Res,2018,17(8):2581-2589.
    [3] Escher C,Reiter L,Maclean B,et al. Using iRT,a normalized retention time for more targeted measurement of peptides[J]. Proteomics,2012,12(8):1111-1121.
    [4] Krokhin O,Craig R,Spicer V,et al. An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC:its application to protein peptide mapping by off-line HPLC-MALDI MS[J]. Mol Cell Proteomics,2004,3(9):908-919.
    [5] Moruz L,Tomazela D,K?ll L. Training,selection,and robust calibration of retention time models for targeted proteomics[J]. J Proteome Res,2010,9(10):5209-5216.
    [6] Zohora FT,Rahman MZ,Tran NH,et al. DeepIso:a deep learning model for peptide feature detection from LC-MS map[J].Sci Rep,2019,9(1):17168.
    [7] Baczek T,Kaliszan R,Novotná K,et al. Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model[J]. J Chromatogr A,2005,1075:109-115.
    [8] Le Maux S,Nongonierma A,Fitzgerald R. Improved short peptide identification using HILIC-MS/MS:retention time prediction model based on the impact of amino acid position in the peptide sequence[J]. Food Chem,2015,173:847-854.
    [9] Gorshkov A,Tarasova I,Evreinov V,et al. Liquid chromatography at critical conditions:comprehensive approach to sequence-dependent retention time prediction[J]. Anal Chem,2006,78(22):7770-7777.
    [10] Tarasova I,Goloborodko A,Perlova T,et al. Application of statistical thermodynamics to predict the adsorption properties of polypeptides in reversed-phase HPLC[J]. Anal Chem,2015,87(13):6562-6569.
    [11] Gallien S,Peterman S,Kiyonami R,et al. Highly multiplexed targeted proteomics using precise control of peptide retention time[J]. Proteomics,2012,12(8):1122-1133.
    [12] Bruderer R,Bernhardt O,Gandhi T,et al. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation[J]. Proteomics,2016,16:2246-2256.
    [13] Meek J. Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition[J]. Proc Natl Acad Sci U S A,1980,77(3):1632-1636.
    [14] Mant C,Hodges R. Context-dependent effects on the hydrophilicity/hydrophobicity of side-chains during reversed-phase high-performance liquid chromatography:implications for prediction of peptide retention behaviour[J]. J Chromatogr A,2006,1125(2):211-219.
    [15] Mant C,Hodges R. Design of peptide standards with the same composition and minimal sequence variation to monitor performance/selectivity of reversed-phase matrices[J]. J Chromatogr A,2012,1230:30-40.
    [16] Tripet B,Cepeniene D,Kovacs JM,et al. Requirements for prediction of peptide retention time in reversed-phase high-performance liquid chromatography:hydrophilicity/hydrophobicity of side-chains at the N- and C-termini of peptides are dramatically affected by the end-groups and location[J]. J Chromatogr A,2007,1141(2):212-225.
    [17] Dwivedi R,Spicer V,Harder M,et al. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics[J]. Anal Chem,2008,80(18):7036-7042.
    [18] Reimer J,Spicer V,Krokhin O. Application of modern reversed-phase peptide retention prediction algorithms to the Houghten and DeGraw dataset:peptide helicity and its effect on prediction accuracy[J]. J Chromatogr A,2012,1256:160-168.
    [19] Spicer V,Lao Y,Shamshurin D,et al. N-capping motifs promote interaction of amphipathic helical peptides with hydrophobic surfaces and drastically alter hydrophobicity values of individual amino acids[J]. Anal Chem,2014,86(23):11498-11502.
    [20] Krokhin O,Ezzati P,Spicer V. Peptide retention time prediction in hydrophilic interaction liquid chromatography:data collection methods and features of additive and sequence-specific models[J]. Anal Chem,2017,89(10):5526-5533.
    [21] Gussakovsky D,Neustaeter H,Spicer V,et al. Sequence-specific model for peptide retention time prediction in strong cation exchange chromatography[J]. Anal Chem,2017,89(21):11795-11802.
    [22] Petritis K,Kangas L,Ferguson P,et al. Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses[J]. Anal Chem,2003,75(5):1039-1048.
    [23] Shinoda K,Sugimoto M,Yachie N,et al. Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome using artificial neural networks[J]. J Proteome Res,2006,5(12):3312-3317.
    [24] Klammer AA,Yi X,Maccoss MJ,et al. Peptide retention time prediction yields improved tandem mass spectrum identification for diverse chromatography conditions[J]. Anal Chem,2007,79(16):6111-6118.
    [25] Petritis K,Kangas L,Yan B,et al. Improved peptide elution time prediction for reversed-phase liquid chromatography-MS by incorporating peptide sequence information[J]. Anal Chem,2006,78(14):5026-5039.
    [26] Zhang J,Zhang D,Zhang W,et al. A new peptide retention time prediction method for mass spectrometry based proteomic analysis by a serial and parallel support vector machine model[J]. Se Pu,2012,30(9):857-863.
    [27] Maboudi Afkham H,Qiu X,The M,et al. Uncertainty estimation of predictions of peptides'' chromatographic retention times in shotgun proteomics[J]. Bioinformatics,2017,33(4):508-513.
    [28] Lu W,Liu X,Liu S,et al. Locus-specific retention predictor (LsRP):a peptide retention time predictor developed for precision proteomics[J]. Sci Rep,2017,7:43959.
    [29] Gessulat S,Schmidt T,Zolg D,et al. Prosit:proteome-wide prediction of peptide tandem mass spectra by deep learning[J]. Nat Methods,2019,16(6):509-518.
    [30] Fergadis A,Baziotis C,Pappas D,et al. Hierarchical bi-directional attention-based RNNs for supporting document classification on protein-protein interactions affected by genetic mutations.[J] .Database (Oxford),2018:bay076.
    [31] Tiwary S,Levy R,Gutenbrunner P,et al. High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis[J]. Nat Methods,2019,16(6):519-525.
    [32] Guan S,Moran M,Ma B,et al. Prediction of LC-MS/MS properties of peptides from sequence by deep learning[J]. Mol Cell Proteomics,2019,18(10):2099-2107.
    [33] Ma C,Ren Y,Yang J,et al. Improved peptide retention time prediction in liquid chromatography through deep learning[J]. Anal Chem,2018,90(18):10881-10888.
    [34] Yang Y,Liu X,Shen C,et al. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics[J]. Nat Commun,2020,11(1):146.
    [35] Wen B,Li K,Zhang Y,et al. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis[J]. Nat Commun,2020,11(1):1759.
    [36] Bouwmeester R,Gabriels R,Van Den Bossche T,et al. The age of data-driven proteomics:how machine learning enables novel workflows[J]. Proteomics,2020,20(21/22):e1900351.
    [37] Olsen J,Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry[J]. Mol Cell Proteomics,2013,12(12):3444-3452.
    [38] Reimer J,Shamshurin D,Harder M,et al. Effect of cyclization of N-terminal glutamine and carbamidomethyl-cysteine (residues) on the chromatographic behavior of peptides in reversed-phase chromatography[J]. J Chromatogr A,2011,1218(31):5101-5107.
    [39] Perlova T,Goloborodko A,Margolin Y,et al. Retention time prediction using the model of liquid chromatography of biomacromolecules at critical conditions in LC-MS phosphopeptide analysis[J]. Proteomics,2010,10(19):3458-3468.
    [40] Sargaeva NP,Goloborodko AA,O''connor PB,et al. Sequence-specific predictive chromatography to assist mass spectrometric analysis of asparagine deamidation and aspartate isomerization in peptides[J]. Electrophoresis,2011,32(15):1962-1969.
    [41] Ogata K,Krokhin O,Ishihama Y. Retention order reversal of phosphorylated and unphosphorylated peptides in reversed-phase LC/MS[J]. Anal Sci,2018,34(9):1037-1041.
    [42] Moruz L,Staes A,Foster J,et al. Chromatographic retention time prediction for posttranslationally modified peptides[J]. Proteomics,2012,12(8):1151-1159.
    [43] Wen B,Zeng W,Liao Y,et al. Deep learning in proteomics[J]. Proteomics,2020,20(20/21):e1900335.
    [44] Ivanov MV,Bubis JA,Gorshkov V,et al. Boosting MS1-only proteomics with machine learning allows 2000 protein identifications in single-shot human proteome analysis using 5 min HPLC gradient[J] .J Proteome Res,2021,20(4):1864-1873.
    [45] MacLean B,Tomazela DM,Shulman N,et al. Skyline:an open source document editor for creating and analyzing targeted proteomics experiments[J]. Bioinformatics,2010,26(7):966-968.
    [46] R?st H,Malmstr?m L,Aebersold R,et al. A computational tool to detect and avoid redundancy in selected reaction monitoring[J]. Mol Cell Proteomics,2012,11(8):540-549.
    [47] Searle BC,Swearingen KE,Barnes CA,et al. Generating high quality libraries for DIA MS with empirically corrected peptide predictions[J] .Nat Commun,2020,11(1):1548.
    [48] Moruz L,Hoopmann M,Rosenlund M,et al. Mass fingerprinting of complex mixtures:protein inference from high-resolution peptide masses and predicted retention times[J]. J Proteome Res,2013,12(12):5730-5741.
    [49] Demichev V,Messner C,Vernardis S,et al. DIA-NN:neural networks and interference correction enable deep proteome coverage in high throughput[J]. Nat Methods,2020,17(1):41-44.
    [50] Gorshkov AV,Evreinov VV,Pridatchenko ML,et al. Applicability of the critical-chromatography concept to analysis of proteins:dependence of retention times on the sequence of amino acid residues in a chain[J]. Polymer Sci,2011,53(12):1227-1241.
    [51] Pridatchenko M,Perlova T,Ben Hamidane H,et al. On the utility of predictive chromatography to complement mass spectrometry based intact protein identification[J]. Anal Bioanal Chem,2012,402(8):2521-2529.
    [52] Xu L,Glatz C. Predicting protein retention time in ion-exchange chromatography based on three-dimensional protein characterization[J]. J Chromatogr A,2009,1216(2):274-280.
    [53] Chen J,Yang T,Cramer S. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems[J]. J Chromatogr A,2008,1177(2):207-214.
    [54] Karlberg M,de Souza JV,Fan L,et al. QSAR Implementation for HIC retention time prediction of mAbs using fab structure:a comparison between structural representations[J] .Int J Mol Sci,2020,21(21):8037.
  • 期刊类型引用(2)

    1. 甄雪妍,周宝津,刘静雯,任艳. 一种热蛋白质组学分析数据的归一化方法. 高等学校化学学报. 2024(12): 48-54 . 百度学术
    2. 黄敏,郎许锋,周作建,李红岩,万泽宇,王锐,程俊,朱金阳,何佳怡,郑永明,胡孔法. 基于TPE_XGBoost的冠心病风险评估与致病因素研究. 软件导刊. 2023(05): 42-49 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  257
  • HTML全文浏览量:  4
  • PDF下载量:  850
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-04-29
  • 刊出日期:  2021-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭