• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

免疫检查点B7-H3表位疫苗的设计及其抗肿瘤活性

夏雪霏, 张莉, 罗建华, 姚文兵, 高向东, 田浤

夏雪霏, 张莉, 罗建华, 姚文兵, 高向东, 田浤. 免疫检查点B7-H3表位疫苗的设计及其抗肿瘤活性[J]. 中国药科大学学报, 2021, 52(4): 472-479. DOI: 10.11665/j.issn.1000-5048.20210410
引用本文: 夏雪霏, 张莉, 罗建华, 姚文兵, 高向东, 田浤. 免疫检查点B7-H3表位疫苗的设计及其抗肿瘤活性[J]. 中国药科大学学报, 2021, 52(4): 472-479. DOI: 10.11665/j.issn.1000-5048.20210410
XIA Xuefei, ZHANG Li, LUO Jianhua, YAO Wenbing, GAO Xiangdong, TIAN Hong. Design and antitumor activity of immune checkpoint B7-H3 epitope vaccine[J]. Journal of China Pharmaceutical University, 2021, 52(4): 472-479. DOI: 10.11665/j.issn.1000-5048.20210410
Citation: XIA Xuefei, ZHANG Li, LUO Jianhua, YAO Wenbing, GAO Xiangdong, TIAN Hong. Design and antitumor activity of immune checkpoint B7-H3 epitope vaccine[J]. Journal of China Pharmaceutical University, 2021, 52(4): 472-479. DOI: 10.11665/j.issn.1000-5048.20210410

免疫检查点B7-H3表位疫苗的设计及其抗肿瘤活性

基金项目: 国家自然科学基金资助项目(No.81973222,No.82073754);新疆自治区重点研发计划项目(No.2020B03003-2)

Design and antitumor activity of immune checkpoint B7-H3 epitope vaccine

Funds: This study was supported by the National Natural Science Foundation of China (No.81973222, No.82073754); Key Research and Development Project of and Xinjiang Autonomous Region (No.2020B03003-2)
  • 摘要: B7-H3是在多种肿瘤表面过表达的免疫检查点分子,是肿瘤免疫治疗的理想靶点。利用本实验室前期设计的硝基化T细胞表位为基础,构建了可靶向免疫检查点B7-H3的表位疫苗。该疫苗能在CT26结肠癌模型中显著抑制肿瘤生长,且与PD-L1蛋白疫苗有明显的协同作用。B7-H3疫苗可以增加脾脏T淋巴细胞中CD4+ T细胞的比例和肿瘤浸润T淋巴细胞中CD8+ T细胞的比例,同时减少肿瘤浸润CD4+ T淋巴细胞中抑制性Treg细胞的比例,有效改善肿瘤免疫抑制微环境。研究结果提示,B7-H3表位疫苗可以作为有效的肿瘤疫苗候选分子。
    Abstract: B7-H3 is an immune checkpoint molecule overexpressed on the surface of a variety of tumors, and is is an ideal target for tumor immunotherapy. In this study, nitrolated T cell epitope designed in the early stage of the laboratory was used to construct an epitope vaccine that can target immune checkpoint B7-H3. The vaccine can significantly inhibit tumor growth in the CT26 colon cancer model, and has a significant synergistic effect with the PD-L1 protein vaccine. B7-H3 vaccine can increase the proportion of CD4+ T cells in splenic T lymphocytes and the proportion of CD8+ T cells in tumor-infiltrating T lymphocytes, while reducing the proportion of suppressor Treg cells in tumor-infiltrating CD4+ T lymphocytes, which effectively improves tumor immunosuppressive microenvironment. Research results suggest that the B7-H3 epitope vaccine can be used as an effective tumor vaccine candidate molecule.
  • [1] . Clin Cancer Res,2016,22(14):3425-3431.
    [2] Kontos F,Michelakos T,Kurokawa T,et al. B7-H3:an attractive target for antibody-based immunotherapy[J]. Clin Cancer Res,2021,27(5):1227-1235.
    [3] Du H,Hirabayashi K,Ahn S,et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells[J]. Cancer Cell,2019,35(2):221-237.
    [4] Leitner J,Klauser C,Pickl WF,et al. B7-H3 is a potent inhibitor of human T-cell activation:no evidence for B7-H3 and TREML2 interaction[J]. Eur J Immunol,2009,39(7):1754-1764.
    [5] Suh WK,Gajewska BU,Okada H,et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses[J]. Nat Immunol,2003,4(9):899-906.
    [6] Kang FB,Wang L,Li D,et al. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression[J]. Oncol Rep,2015,33(1):274-282.
    [7] Mosser DM,Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol,2008,8(12):958-969.
    [8] Mao Y,Chen L,Wang F,et al. Cancer cell-expressed B7-H3 regulates the differentiation of tumor-associated macrophages in human colorectal carcinoma[J]. Oncol Lett,2017,14(5):6177-6183.
    [9] Castriconi R,Dondero A,Augugliaro R,et al. Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis[J]. Proc Natl Acad Sci U S A,2004,101(34):12640-12645.
    [10] Castellanos JR,Purvis IJ,Labak CM,et al. B7-H3 role in the immune landscape of cancer[J]. Am J Clin Exp Immunol,2017,6(4):66-75.
    [11] Zhang Z,Jiang C,Liu Z,et al. B7-H3-targeted CAR-T cells exhibit potent antitumor effects on hematologic and solid tumors[J]. Mol Ther Oncolytics,2020,17:180-189.
    [12] Maeng H,Terabe M,Berzofsky JA. Cancer vaccines:translation from mice to human clinical trials[J]. Curr Opin Immunol,2018,51:111-122.
    [13] Wong KK,Li WA,Mooney DJ,et al. Advances in therapeutic cancer vaccines[J]. Adv Immunol,2016,130:191-249.
    [14] Tian H,He Y,Song X,et al. Nitrated T helper cell epitopes enhance the immunogenicity of HER2 vaccine and induce anti-tumor immunity[J]. Cancer Lett,2018,430:79-87.
    [15] Alexander J,Sidney J,Southwood S,et al. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides[J]. Immunity,1994,1(9):751-761.
    [16] Topalian SL,Drake CG,Pardoll DM. Immune checkpoint blockade:a common denominator approach to cancer therapy[J]. Cancer Cell,2015,27(4):450-461.
    [17] He Y,Tian H,Dai X,et al. Immunogenicity of HER2 vaccine containing p-nitrophenylalanine[J]. J China Pharm Univ(中国药科大学学报) ,2018,49(3):369-375.
    [18] Tian H,Kang Y,Song X,et al. PDL1-targeted vaccine exhibits potent antitumor activity by simultaneously blocking PD1/PDL1 pathway and activating PDL1-specific immune responses[J]. Cancer Lett,2020,476:170-182.
    [19] Sharma P,Allison JP. Immune checkpoint targeting in cancer therapy:toward combination strategies with curative potential[J]. Cell,2015,161(2):205-214.
    [20] Mahata B,Pramanik J,Van Der Weyden L,et al. Tumors induce de novo steroid biosynthesis in T cells to evade immunity[J]. Nat Commun,2020,11(1):3588.
    [21] Hendry S,Salgado R,Gevaert T,et al. Assessing tumor-infiltrating lymphocytes in solid tumors:a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group:Part 2:TILs in melanoma,gastrointestinal tract carcinomas,non-small cell lung carcinoma and mesothelioma,endometrial and ovarian carcinomas,squamous cell carcinoma of the head and neck,genitourinary carcinomas,and primary brain tumors[J]. Adv Anat Pathol,2017,24(6):311-335.
    [22] Savage PA,Leventhal DS,Malchow S. Shaping the repertoire of tumor-infiltrating effector and regulatory T cells[J]. Immunol Rev,2014,259(1):245-258.
    [23] Stockis J,Roychoudhuri R,Halim TYF. Regulation of regulatory T cells in cancer[J]. Immunology,2019,157(3):219-231.
计量
  • 文章访问数:  214
  • HTML全文浏览量:  3
  • PDF下载量:  650
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-06-27
  • 刊出日期:  2021-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭