• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

CAR-T细胞免疫治疗实体瘤的研究进展

姚铮, 李子涵, 高利明, 胡星, 陈颜, 潘文琦, 李谦

姚铮, 李子涵, 高利明, 胡星, 陈颜, 潘文琦, 李谦. CAR-T细胞免疫治疗实体瘤的研究进展[J]. 中国药科大学学报, 2021, 52(4): 496-504. DOI: 10.11665/j.issn.1000-5048.20210413
引用本文: 姚铮, 李子涵, 高利明, 胡星, 陈颜, 潘文琦, 李谦. CAR-T细胞免疫治疗实体瘤的研究进展[J]. 中国药科大学学报, 2021, 52(4): 496-504. DOI: 10.11665/j.issn.1000-5048.20210413
YAO Zheng, LI Zihan, GAO Liming, HU Xing, CHEN Yan, PAN Wenqi, LI Qian. Advances of research on CAR-T cell immunotherapy for solid tumors[J]. Journal of China Pharmaceutical University, 2021, 52(4): 496-504. DOI: 10.11665/j.issn.1000-5048.20210413
Citation: YAO Zheng, LI Zihan, GAO Liming, HU Xing, CHEN Yan, PAN Wenqi, LI Qian. Advances of research on CAR-T cell immunotherapy for solid tumors[J]. Journal of China Pharmaceutical University, 2021, 52(4): 496-504. DOI: 10.11665/j.issn.1000-5048.20210413

CAR-T细胞免疫治疗实体瘤的研究进展

Advances of research on CAR-T cell immunotherapy for solid tumors

  • 摘要: 近年来过继性细胞免疫疗法因效果显著而得到广泛认可,尤其是CD19特异嵌合抗原受体(CAR)的自体T细胞治疗恶性血液瘤取得成功。本文总结实体肿瘤存在肿瘤免疫微环境、靶点不均一以及免疫抑制性受体等原因导致CAR-T无法有效治疗,提出改进CAR-T细胞以提高T细胞浸润、共表达细胞因子与酶以及修饰相关受体等方式提高CAR-T抗实体肿瘤活性,为后续CAR-T细胞治疗实体肿瘤研究奠定理论基础。
    Abstract: Adoptive cellular immunotherapy has been widely recognized in recent years due to its remarkable results, especially the success of CD19-specific chimeric antigen receptor (CAR) autologous T cell therapy for malignant hematoma. Previous studies have found the existence of tumor immune microenvironment, heterogeneous targets, and immunosuppressive receptors in solid tumors, which has led to the shortcomings of CAR-T treatment of solid tumors. This article proposes the methods to improve CAR-T cells to increase T cell infiltration, co-expression of cytokines and enzymes and modification of related receptors in order to enhance the anti-solid tumor activity of CAR-T, laying a theoretical foundation for the follow-up CAR-T cell treatment of solid tumors.
  • [1] . Nat Rev Drug Discov,2018,17(3):161.
    [2] Lee SY,Olsen P,Lee DH,et al. Preclinical optimization of a CD20-specific chimeric antigen receptor vector and culture conditions[J]. J Immunother,2018,41(1):19-31.
    [3] Gomes-Silva D,Mukherjee M,Srinivasan M,et al. Tonic 4-1BB costimulation in chimeric antigen receptor impedes T cell survival and is vector-dependent[J]. Cell Rep,2017,21(1):17-26.
    [4] Mardiana S,John LB,Henderson MA,et al. A multifunctional role for adjuvant anti-4-1BB therapy in augmenting antitumor response by chimeric antigen receptor T cell[J]. Cancer Res,2017,77(6):1296-1309.
    [5] Theocharis AD,Skandalis SS,Gialeli C,et al. Extracellular matrix structure[J]. Adv Drug Deliver Rev,2016,97:4-27.
    [6] Digre A,Singh K,Abrink M,et al. Overexpression of heparinase enhances T lymphocyte activities and intensifies the inflammatory response in a model of murine rheumatoid arthritis[J]. Sci Rep,2017,7:46229.
    [7] Foutenot JD,Gavin MA,Rudensky AY. Foxp3 porgrams the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol,2003,4(4):330.
    [8] Khaled YS,Ammori BJ,Elkord E. Myeloid-Deried suppressor cells in cancer:recent progress and prospects[J]. Immunol Cell Biol,2013,91(8):493-502.
    [9] Li T,Li X,Zamani A,et al. C-Rel is a myeloid checkpoint for cancer immunotherapy[J]. Nat Cancer,2020,1(5):507-517.
    [10] Condeelis J,Pollard JW. Macrophages:obligate partners for tumor cell migration,invasion,and metasis[J]. Cell,2006,124(2):263.
    [11] Sharda DR,Yu S,Ray M,et al. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase[J]. J Immunol,2011,187(5):2181-2192.
    [12] Baroja ML,Luenberg D,Chau T,et al. The inhibitory function of CTLA-4 does not require its tyrosine phosphorylation[J]. J Immunol,2000,164(1):49-55.
    [13] Curran MA,Montalvo W,Yagita H,et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. PNAS,2010,107(9):4275-4280.
    [14] Zhu C,Anderson AC,Schubart A,et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nat Immunol,2005,6(12):1245-1252.
    [15] Wang L,Rubinstein R,Lines JL,et al. VISTA,a novel mouse Ig superfamily ligand that negatively regulates T cell responses[J]. J Exp Med,2011,208(3):577-592.
    [16] Harlin H,Meng Y,Peterson AC,et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment[J]. Cancer Res,2009,69(7):3077-3085.
    [17] Sick E,Jeanne A,Schneider C,et al. CD47 update:a multifaceted actor in the tumor microenvironment of potential therapeutic interest[J]. Br J Pharmacol,2012,167(7):1415-1430.
    [18] Weber WP,Feder-Mengus C,Chiarugi A,et al. Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines[J]. Eur J Immunol,2006,36(2):296-304.
    [19] Della CM,Carlomagno S,Frumento G,et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function[J]. Blood,2006,108(13):4118-4125.
    [20] Ye Y,Yin DT,Li C,et al. Identification of Piwil-like(PL2L) proteins that promote tumorigenesis[J]. PLoS One,2010,5(10):e13406.
    [21] Craddock JA,Lu A,Bear A,et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b[J]. J Immunother,2010,33(8):780-788.
    [22] Schuberth PC,Hagedorn C,Jensen SM,et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells[J]. J Transl Med,2013,11(1):187.
    [23] Wang Y,Xu Y,Li SS,et al. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor engineered T cells[J]. J Hematol Oncol,2018,11(1):60.
    [24] Fu X,Rivera A,Tao L,et al. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels,shrink established solid tumors and increase nanoparticle delivery[J]. Int J Cancer,2013,133(10):2483-2492.
    [25] Hosen N,Matsunaga Y,Hasegawa K,et al. The activated conformation of integrin β7 is a novel multiple myeloma-sepcific target for CAR T cell therapy[J]. Nat Med,2017,23(12):1436-1443.
    [26] Pegram HJ,Lee JC,Hayman EG,et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning[J]. Blood,2012,119(18):4133-4141.
    [27] Chow KPN,Qiu JT,Lee JM,et al. Selective reduction of post-selection CD8 thymocyte proliferation in IL-15Rα Deficient Mice[J]. PLoS One,2012,7(3):e33152.
    [28] Marin V,Hoyos VM,Savoldo B,et al. In vitro and in vivo mode of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD23 chimeric antigen receptor[J]. Blood,2011,117(18):4736-4745.
    [29] Ligtenberg MA,Mougiakakos D,Mukhopadhyay M,et al. Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity[J]. J Immunol,2016,196(2):759-766 .
    [30] Boice M,Salloum D,Mourcin F,et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells[J]. Cell,2016,167(2):405-418.
    [31] Holohan DR,Lee JC,Bluestone JA,et al. Shifting the evolving CAR T cell platform into higher gear[J]. Cancer Cell,2015,28(4):401-402.
    [32] Marigo I,Zilio S,Desantis G,et al. T Cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells[J]. Cancer Cell,2016,30(3):377-390.
    [33] Bollard CM,Rossig C,Calonge MJ,et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity[J]. Blood,2002,99(9):3179-3187.
    [34] Gao J,Shi LZ,Zhao H,et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy[J]. Cell,2016,167(2):397-404.
    [35] Prosser ME,Brown CE,Shami AF,et al. Tumor PD-L1 co-stimulates primary human CD8(+) cytotoxic T cells modified to express a PD1:CD28 chimeric receptor[J]. Mol Immunol,2012,51(3/4):263-272.
    [36] Ma L,Dichwalkar T,Chang JYH,et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science,2019,3 65(6449):162-168.
    [37] Amor C,Feucht J,Leibold J,et al. Senolytic CAR T cells reverse senescence-associated pathologies[J]. Nature,2020,5839(7814):127-132.
    [38] Sachdeva M,Busser BW,Temburni S,et al. Repurposing endogenous immune pathways to tailor and control chimeric antigen receptor T cell functionality[J]. Nat Commun,2019,10(1):5100.
  • 期刊类型引用(10)

    1. 邹霞. 2019—2022年医院住院药房麻醉药品使用情况分析. 临床合理用药. 2025(04): 132-135 . 百度学术
    2. 宋文涛,曾令高,高梓真,王佳瑜,冯旭,许向阳. 高效液相色谱法测定枸橼酸芬太尼注射液有关物质含量. 中国药业. 2024(03): 15-19 . 百度学术
    3. 姚晓飞,刘玉勇,胡爽. 芬太尼类物质的危害及滥用预防. 中国药物依赖性杂志. 2024(03): 204-208 . 百度学术
    4. 李国娟,杨洲,杨柳,廖彩云,杨荣极. 气相色谱—质谱用于七种新精神活性物质分析研究. 山东化工. 2023(10): 148-151 . 百度学术
    5. 王斌杰,付立斌,叶昕宇,卓晓聪,姚伟宣,秦亚洲,刘猛,吴元钊. 芬太尼对斑马鱼幼鱼的心脏和神经毒性及机制. 中国药理学与毒理学杂志. 2023(10): 767-773 . 百度学术
    6. 孙立敏,王松才,朱焕慧,林贤文,管旭,谭莉. 在线固相萃取-液质联用法同时检测血液样品中12种芬太尼类药物. 刑事技术. 2022(02): 121-127 . 百度学术
    7. 古丽,周莉,李勇帅,冯力元,陈星同,刘祥凤,全俊先,李鹏,顾健腾. CYP3A4、CYP3A5基因多态性对患者腹腔镜术后舒芬太尼自控静脉镇痛的影响. 陆军军医大学学报. 2022(09): 930-934 . 百度学术
    8. 王恒所,胡成云,李传耀,唐朝亮. 甲状腺手术患者达克罗宁辅助利多卡因表麻抑制气管插管反应的效果. 安徽卫生职业技术学院学报. 2021(02): 32-34 . 百度学术
    9. 杨雪,包涵. 芬太尼类物质滥用防控难点与对策研究. 湖北警官学院学报. 2021(03): 71-81 . 百度学术
    10. 杨广博. 我国毒品定义的审视与重构——以非药用类麻醉药品和精神药品及其列管为视角. 中国人民公安大学学报(社会科学版). 2021(06): 87-96 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  481
  • HTML全文浏览量:  10
  • PDF下载量:  932
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2021-06-24
  • 刊出日期:  2021-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭