• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

钙离子信号介导Nod样受体蛋白炎性小体激活的研究进展

陈雨, 徐志猛, 李萍

陈雨, 徐志猛, 李萍. 钙离子信号介导Nod样受体蛋白炎性小体激活的研究进展[J]. 中国药科大学学报, 2021, 52(5): 513-521. DOI: 10.11665/j.issn.1000-5048.20210501
引用本文: 陈雨, 徐志猛, 李萍. 钙离子信号介导Nod样受体蛋白炎性小体激活的研究进展[J]. 中国药科大学学报, 2021, 52(5): 513-521. DOI: 10.11665/j.issn.1000-5048.20210501
CHEN Yu, XU Zhimeng, LI Ping. Calcium signal-mediated activation of NLRP3 inflammasome[J]. Journal of China Pharmaceutical University, 2021, 52(5): 513-521. DOI: 10.11665/j.issn.1000-5048.20210501
Citation: CHEN Yu, XU Zhimeng, LI Ping. Calcium signal-mediated activation of NLRP3 inflammasome[J]. Journal of China Pharmaceutical University, 2021, 52(5): 513-521. DOI: 10.11665/j.issn.1000-5048.20210501

钙离子信号介导Nod样受体蛋白炎性小体激活的研究进展

基金项目: 国家重点研究发展计划资助项目(No.2018YFC1707300)

Calcium signal-mediated activation of NLRP3 inflammasome

Funds: This study was supported by the National Key Research and Development Program of China (No.2018YFC1707300)
  • 摘要: Nod样受体蛋白(Nod-like receptor protein 3, NLRP3)炎性小体可识别多种病原体及细胞损伤,诱导分泌白细胞介素1β(interleukin-1β, IL-1β)、IL-18,调节炎症反应,是固有免疫系统的重要组成部分。近年研究表明,钙离子(Ca2+)信号参与多种NLRP3激动剂诱导的NLRP3炎性小体激活过程,并与相关疾病的发生密切相关。本文综述了有关钙离子与NLRP3炎性小体的相关研究,重点关注钙离子信号在NLRP3炎性小体激活和调节中的潜在作用,为治疗NLRP3炎性小体驱动的炎症性疾病提供新思路。
    Abstract: Nod-like receptor protein 3 (NLRP3) inflammasome, which is an important component of the innate immune system, can recognize a variety of pathogens and cell damage, induce the secretion of IL-1β and IL-18, and regulate imflammatory response.More and more studies in recent years have shown that Ca2+ signaling plays an important role in NLRP3 inflammasome activation induced by various NLRP3 inflammasome agonists, and is closely related to the occurrence of related diseases.The article reviews the literatures on Ca2+ and NLRP3 inflammasome, focusing on the potential role of Ca2+ signaling in the activation and regulation of NLRP3 inflammasome, to provide new ideas for the treatment of illness caused by NLRP3 inflammasome.
  • [1] . Nat Rev Immunol,2019,19(3): 154-169.
    [2] Murakami T,Ockinger J,Yu J,et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome[J]. PNAS,2012,109(28): 11282-11287.
    [3] He Y,Zeng MY,Yang D,et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J]. Nature,2016,530(7590): 354-357.
    [4] Kuri P,Schieber NL,Thumberger T,et al. Dynamics of in vivo ASC speck formation[J]. J Cell Biol,2017,216(9): 2891-2909.
    [5] Dick MS,Sborgi L,Rühl S,et al. ASC filament formation serves as a signal amplification mechanism for inflammasomes[J]. Nat Commun,2016,7: 11929.
    [6] Hoss F,Rodriguez-Alcazar JF,Latz E. Assembly and regulation of ASC specks[J]. Cell Mol Life Sci,2017,74(7): 1211-1229.
    [7] Broz P,Dixit VM. Inflammasomes: mechanism of assembly,regulation and signalling[J]. Nat Rev Immunol,2016,16(7): 407-420.
    [8] Barnett KC,Ting JP. Mitochondrial GSDMD pores DAMPen pyroptosis[J]. Immunity,2020,52(3): 424-426.
    [9] Swanson KV,Deng M,Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol,2019,19(8): 477-489.
    [10] Wu JS,Sun JY,Meng XL. Pyroptosis by caspase-11 inflammasome-Gasdermin D pathway in autoimmune diseases[J]. Pharmacol Res,2021,165: 105408.
    [11] Bauernfeind F,Bartok E,Rieger A,et al. Cutting edge: reactive oxygen species inhibitors block priming,but not activation,of the NLRP3 inflammasome[J]. J Immunol,2011,187(2): 613-617.
    [12] Mu?oz-Planillo R,Kuffa P,Martínez-Colón G,et al. K? efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter[J]. Immunity,2013,38(6): 1142-1153.
    [13] Zhang YF,Rong H,Zhang FX,et al. A membrane potential- and calpain-dependent reversal of caspase-1 inhibition regulates canonical NLRP3 inflammasome[J]. Cell Rep,2018,24(9): 2356-2369.
    [14] Gro? CJ,Mishra R,Schneider KS,et al. K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria[J]. Immunity,2016,45(4): 761-773.
    [15] Orlowski GM,Sharma S,Colbert JD,et al. Frontline Science: multiple cathepsins promote inflammasome-independent,particle-induced cell death during NLRP3-dependent IL-1β activation[J]. J Leukoc Biol,2017,102(1): 7-17.
    [16] Chen JQ,Chen ZJ. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation[J]. Nature,2018,564(7734): 71-76.
    [17] Calvo-Rodriguez M,Kharitonova EK,Bacskai BJ. Therapeutic strategies to target calcium dysregulation in Alzheimer''s disease[J]. Cells,2020,9(11): E2513.
    [18] Park YJ,Yoo SA,Kim M,et al. The role of calcium-calcineurin-NFAT signaling pathway in health and autoimmune diseases[J]. Front Immunol,2020,11: 195.
    [19] Michelucci A,García-Casta?eda M,Boncompagni S,et al. Role of STIM1/ORAI1-mediated store-operated Ca2+ entry in skeletal muscle physiology and disease[J]. Cell Calcium,2018,76: 101-115.
    [20] Chu J,Thomas LM,Watkins SC,et al. Cholesterol-dependent cytolysins induce rapid release of mature IL-1beta from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner[J]. J Leukoc Biol,2009,86(5): 1227-1238.
    [21] Xi YH,Li HZ,Zhang WH,et al. The functional expression of calcium-sensing receptor in the differentiated THP-1 cells[J]. Mol Cell Biochem,2010,342(1/2): 233-240.
    [22] Lee GS,Subramanian N,Kim AI,et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP[J]. Nature,2012,492(7427): 123-127.
    [23] Ito M,Yanagi Y,Ichinohe T. Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome[J]. PLoS Pathog,2012,8(8): e1002857.
    [24] Shrivastava G,Visoso-Carvajal G,Garcia-Cordero J,et al. Dengue virus serotype 2 and its non-structural proteins 2A and 2B activate NLRP3 inflammasome[J]. Front Immunol,2020,11: 352.
    [25] Karmakar M,Katsnelson MA,Dubyak GR,et al. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP[J]. Nat Commun,2016,7: 10555.
    [26] Ahmad I,Muneer KM,Chang ME,et al. Ultraviolet radiation-induced downregulation of SERCA2 mediates activation of NLRP3 inflammasome in basal cell carcinoma[J]. Photochem Photobiol,2017,93(4): 1025-1033.
    [27] Gong T,Wang XQ,Yang YQ,et al. Plant lectins activate the NLRP3 inflammasome to promote inflammatory disorders[J]. J Immunol,2017,198(5): 2082-2092.
    [28] Katsnelson MA,Rucker LG,Russo HM,et al. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling[J]. J Immunol,2015,194(8): 3937-3952.
    [29] Katsnelson MA,Lozada-Soto KM,Russo HM,et al. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx[J]. Am J Physiol Cell Physiol,2016,311(1): C83-C100.
    [30] Zumerle S,Calì B,Munari F,et al. Intercellular calcium signaling induced by ATP potentiates macrophage phagocytosis[J]. Cell Rep,2019,27(1): 1-10.
    [31] Zhang CF,Qin JL,Zhang S,et al. ADP/P2Y1 aggravates inflammatory bowel disease through ERK5-mediated NLRP3 inflammasome activation[J]. Mucosal Immunol,2020,13(6): 931-945.
    [32] J?ger E,Murthy S,Schmidt C,et al. Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis[J]. Nat Commun,2020,11(1): 4243.
    [33] Tauseef M,Knezevic N,Chava KR,et al. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation[J]. J Exp Med,2012,209(11): 1953-1968.
    [34] Zhong ZY,Zhai YG,Liang S,et al. TR/MIN2 links oxidative stress to NLRP3 inflammasome activation[J]. Nat Commun,2013,4(1): 1-11.
    [35] Wang MY,Zhang YB,Xu MM,et al. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model[J]. Free Radic Biol Med,2019,134: 229-238.
    [36] Compan V,Baroja-Mazo A,López-Castejón G,et al. Cell volume regulation modulates NLRP3 inflammasome activation[J]. Immunity,2012,37(3): 487-500.
    [37] Liu CC,Miao Y,Chen RL,et al. STIM1 mediates IAV-induced inflammation of lung epithelial cells by regulating NLRP3 and inflammasome activation via targeting miR-223[J]. Life Sci,2021,266: 118845.
    [38] Murayama T,Kurebayashi N. Assays for modulators of ryanodine receptor (RyR)/Ca2+ release channel activity for drug discovery for skeletal muscle and heart diseases[J]. Curr Protoc Pharmacol,2019,87(1): e71.
    [39] Morgan AJ,Yuan Y,Patel S,et al. Does lysosomal rupture evoke Ca2+ release? A question of pores and stores[J]. Cell Calcium,2020,86: 102139.
    [40] Okada M,Matsuzawa A,Yoshimura A,et al. The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation[J]. J Biol Chem,2014,289(47): 32926-32936.
    [41] Xu MD,Jiang ZY,Wang CL,et al. Publisher correction: acetate attenuates inflammasome activation through GPR43-mediated Ca2+-dependent NLRP3 ubiquitination[J]. Exp Mol Med,2019,51(8): 1.
    [42] Lim JR,Lee HJ,Jung YH,et al. Ethanol-activated CaMKII signaling induces neuronal apoptosis through Drp1-mediated excessive mitochondrial fission and JNK1-dependent NLRP3 inflammasome activation[J]. Cell Commun Signal,2020,18(1): 123.
    [43] Chen H,Yang DH,Han FJ,et al. The bacterial T6SS effector EvpP prevents NLRP3 inflammasome activation by inhibiting the Ca2+-dependent MAPK-JNK pathway[J]. Cell Host Microbe,2017,21(1): 47-58.
    [44] Nozawa T,Sano S,Minowa-Nozawa A,et al. TBC1D9 regulates TBK1 activation through Ca2+ signaling in selective autophagy[J]. Nat Commun,2020,11(1): 770.
    [45] Han XJ,Sun SF,Sun YM,et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease[J]. Autophagy,2019,15(11): 1860-1881.
    [46] Zhong ZY,Liang S,Sanchez-Lopez E,et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature,2018,560(7717): 198-203.
    [47] Li W,Cao T,Luo CY,et al. Crosstalk between ER stress,NLRP3 inflammasome,and inflammation[J]. Appl Microbiol Biotechnol,2020,104(14): 6129-6140.
    [48] Misawa T,Takahama M,Kozaki T,et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome[J]. Nat Immunol,2013,14(5): 454-460.
    [49] Li JP,Wei W,Li XX,et al. Regulation of NLRP3 inflammasome by CD38 through cADPR-mediated Ca2+ release in vascular smooth muscle cells in diabetic mice[J]. Life Sci,2020,255: 117758.
    [50] Rimessi A,Bezzerri V,Patergnani S,et al. Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis[J]. Nat Commun,2015,6: 6201.
    [51] Rimessi A,Pozzato C,Carparelli L,et al. Pharmacological modulation of mitochondrial calcium uniporter controls lung inflammation in cystic fibrosis[J]. Sci Adv,2020,6(19): eaax9093.
    [52] Ichinohe T,Yamazaki T,Koshiba T,et al. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection[J]. PNAS,2013,110(44): 17963-17968.
    [53] Zhang XW,Wang RH,Hu D,et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer''s disease[J]. Sci Adv,2020,6(49): eabb8680.
    [54] Yin NN,Gao QH,Tao WT,et al. Paeoniflorin relieves LPS-induced inflammatory pain in mice by inhibiting NLRP3 inflammasome activation via transient receptor potential vanilloid 1[J]. J Leukoc Biol,2020,108(1): 229-241.
    [55] Inzucchi SE,Fitchett D,Juri?i?-Er?en D,et al. Are the cardiovascular and kidney benefits of empagliflozin influenced by baseline glucose-lowering therapy[J]?Diabetes Obes Metab,2020,22(4): 631-639.
    [56] Zhou ZE,Jardine MJ,Li Q,et al. Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: results from the CREDENCE trial and meta-analysis[J]. Stroke,2021,52(5): 1545-1556.
    [57] Byrne NJ,Matsumura N,Maayah ZH,et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure[J]. Circ Heart Fail,2020,13(1): e006277.
    [58] White JP,Cibelli M,Urban L,et al. TRPV4: molecular conductor of a diverse orchestra[J]. Physiol Rev,2016,96(3): 911-973.
    [59] Wang Z,Zhou L,An D,et al. TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice[J]. Cell Death Dis,2019,10(6): 386.
    [60] Elrashidy RA,Hasan RA. Modulation of autophagy and transient receptor potential vanilloid 4 channels by montelukast in a rat model of hemorrhagic cystitis[J]. Life Sci,2021,278: 119507.
    [61] Vincent F,Duncton MA. TRPV4 agonists and antagonists[J]. Curr Top Med Chem,2011,11(17): 2216-2226.
    [62] Lawhorn BG,Brnardic EJ,Behm DJ. TRPV4 antagonists:a patent review (2015-2020)[J]. Expert Opin Ther Pat,2021,31(9): 773-784.
    [63] Goyal N,Skrdla P,Schroyer R,et al. Clinical pharmacokinetics,safety,and tolerability of a novel,first-in-class TRPV4 ion channel inhibitor,GSK2798745,in healthy and heart failure subjects[J]. Am J Cardiovasc Drugs,2019,19(3): 335-342.
  • 期刊类型引用(7)

    1. 陈淼,李亚欣,苏安宇,王敏纯,吴颖,袁秋虹,张盼盼,王利胜. 氯诺昔康可溶性微针的制备及对类风湿性关节炎的药效学研究. 中国医院药学杂志. 2024(03): 287-294 . 百度学术
    2. 王荣倩,刘畅,王梅. 甲氨蝶呤、硫酸羟氯喹联合塞来昔布治疗对类风湿性关节炎患者免疫功能及骨代谢的影响. 系统医学. 2024(13): 188-191 . 百度学术
    3. 张广辉,魏琴,李坤,苏利云,阮文思. 基于TLR4/NF-κB信号通路探究马钱子提取物对类风湿关节炎大鼠的干预效果. 中国老年学杂志. 2024(19): 4763-4767 . 百度学术
    4. 戴文玲,张金玲,黎海冰. 来氟米特联合塞来昔布治疗类风湿关节炎的临床研究. 中国处方药. 2024(09): 102-105 . 百度学术
    5. 范文娟,杨森,张旭升. 超声引导下关节腔药物注射治疗类风湿性关节炎的效果分析. 世界复合医学(中英文). 2024(09): 132-134+139 . 百度学术
    6. 齐潇蕾,徐连那,李旭艳. 塞来昔布与依托考昔治疗类风湿关节炎临床疗效分析. 实用医院临床杂志. 2023(04): 119-122 . 百度学术
    7. 刘冰,刘建瑞,孙敬波,袁红亮,汪洪波,韩冰. 雷公藤多苷片联合塞来昔布治疗活动期湿热痹阻证类风湿性关节炎临床疗效观察. 湖北中医药大学学报. 2022(05): 104-106 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  738
  • HTML全文浏览量:  10
  • PDF下载量:  952
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-09-06
  • 刊出日期:  2021-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭