• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于谷氨酸脱羧酶65的口服疫苗对链脲佐菌素诱导的1型糖尿病小鼠的治疗作用

吴伊玲, 尤琪, 吴洁

吴伊玲, 尤琪, 吴洁. 基于谷氨酸脱羧酶65的口服疫苗对链脲佐菌素诱导的1型糖尿病小鼠的治疗作用[J]. 中国药科大学学报, 2021, 52(5): 614-621. DOI: 10.11665/j.issn.1000-5048.20210515
引用本文: 吴伊玲, 尤琪, 吴洁. 基于谷氨酸脱羧酶65的口服疫苗对链脲佐菌素诱导的1型糖尿病小鼠的治疗作用[J]. 中国药科大学学报, 2021, 52(5): 614-621. DOI: 10.11665/j.issn.1000-5048.20210515
WU Yiling, YOU Qi, WU Jie. Therapeutic effect of oral vaccine based on glutamate decarboxylase 65 on streptozotocin-induced type 1 diabetic mice[J]. Journal of China Pharmaceutical University, 2021, 52(5): 614-621. DOI: 10.11665/j.issn.1000-5048.20210515
Citation: WU Yiling, YOU Qi, WU Jie. Therapeutic effect of oral vaccine based on glutamate decarboxylase 65 on streptozotocin-induced type 1 diabetic mice[J]. Journal of China Pharmaceutical University, 2021, 52(5): 614-621. DOI: 10.11665/j.issn.1000-5048.20210515

基于谷氨酸脱羧酶65的口服疫苗对链脲佐菌素诱导的1型糖尿病小鼠的治疗作用

Therapeutic effect of oral vaccine based on glutamate decarboxylase 65 on streptozotocin-induced type 1 diabetic mice

  • 摘要: 探讨基于谷氨酸脱羧酶65(GAD65)的口服疫苗对链脲佐菌素(STZ)诱导的1型糖尿病(T1D)模型小鼠的治疗作用。采用小剂量多次腹腔注射STZ建立T1D模型。使用溶剂扩散法制备融合蛋白CTB-GADIII与海藻酸钙纳米疫苗(Ca-Alg-GADIII),灌胃T1D小鼠,1周1次,连续5周,每周记录小鼠血糖和体重。通过糖耐量测定(OGTT)和胰腺组织病理分析研究口服疫苗抗T1D药效学。通过ELISA检测血清中谷氨酸脱羧酶抗体(GADA)和胰岛素自身抗体(IAA)、相关细胞因子IL-4、IFN-γ和TGF-β1的含量,流式检测CD4 + T细胞分型情况,对口服疫苗抗T1D作用的免疫学机制进行初步探讨。结果显示,疫苗免疫后的小鼠空腹血糖有一定的改善,糖耐量提高,胰腺损伤减少,胰岛素分泌增加,GADA及IAA滴度显著下降,肠系膜淋巴结和胰腺淋巴结中CD4 + T细胞免疫平衡有一定的改善。实验结果表明Ca-Alg-GADIII口服疫苗对STZ诱导的T1D小鼠具有一定的治疗作用。
    Abstract: To investigate the therapeutic effect of oral vaccine based on glutamate decarboxylase 65 (GAD65) on streptozotocin (STZ) -induced type 1 diabetic (T1D) mice, the mice model of T1D was established by intraperitoneal injection of low dose multiple STZ. CTB-GADIII encapsulated with calcium alginate (Ca-Alg-GADIII) was formulated using crosslinking technology with sodium alginate and calcium chloride, and was administered intragastric to T1D mice once a week for 5 consecutive weeks.Blood glucose and body weight of the mice were recorded weekly, and pharmacodynamics against T1D of Ca-Alg-GADIII were investigated by glucose tolerance assay (OGTT) and pancreatic histopathological analysis. The levels of glutamic acid decarboxylase antibody (GADA), and insulin autoantibody (IAA) and related cytokines (IL-4, IFN-γ, TGF-β1) in serum were detected by ELISA, and the CD4 + T cell subsets were detected by flow cytometry. The immunological mechanism of oral vaccine against T1D was preliminarily discussed. The results showed that the disease-related indicators improved in immunized mice: fasting blood glucose improved, glucose tolerance and insulin secretion increased, pancreatic injury decreased, autoantibodies like GADA and IAA titers significantly decreased, and CD4 + T cell immune balance in mesenteric lymph node (MLN) and pancreatic lymph node (PLN) improved to some extent. The results suggest that oral vaccine Ca-Alg-GADIII has some therapeutic effect on STZ-induced T1D mice.
  • [1] . Front Immunol,2018,9:392.
    [2] Arneth B,Arneth R,Shams M. Metabolomics of type 1 and type 2 diabetes[J]. Int J Mol Sci,2019,20(10):2467.
    [3] Rolandsson O,Hampe CS,Sharp SJ,et al. Autoimmunity plays a role in the onset of diabetes after 40 years of age[J]. Diabetologia,2020,63(2):266-277.
    [4] Tisch R,Yang XD,Liblau RS,et al. Administering glutamic acid decarboxylase to NOD mice prevents diabetes[J]. J Autoimmun,1994,7(6):845-850.
    [5] Yamamoto T,Yamato E,Tashiro F,et al. Development of autoimmune diabetes in glutamic acid decarboxylase 65 (GAD65) knockout NOD mice[J]. Diabetologia,2004,47(2):221-224.
    [6] Casas R,Dietrich F,Barcenilla H,et al. Glutamic acid decarboxylase injection into lymph nodes:beta cell function and immune responses in recent onset type 1 diabetes patients[J]. Front Immunol,2020,11:564921.
    [7] Ludvigsson J. Autoantigen treatment in type 1 diabetes:unsolved questions on how to select autoantigen and administration route[J]. Int J Mol Sci,2020,21(5):1598.
    [8] Wang HQ,Zhang HY,Yang J,et al. Preparation of a glutamate decarboxylase 65-related peptide fusion protein and its efficacy in the treatment of type 1 diabetes mellitus[J]. Pharm Biotechnol(药物生物技术),2009,16(4):296-301.
    [9] Chen YL,Wu J,Wang JJ,et al. Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice[J]. Diabetologia,2018,61(6):1384-1396.
    [10] Wu J,Liu XR,Yang X,et al. Hypoglycemic effect of Lactococcus lactis vaccine containing HSP65-6P277 on streptozotocin-induced type 1 diabetic mice[J]. J China Pharm Univ(中国药科大学学报),2014,45(1):106-110.
    [11] Li M,Wang Y,Sun Y,et al. Mucosal vaccines:strategies and challenges[J]. Immunol Lett,2020,217:116-125.
    [12] Xu H,Hu FQ,Ying XY,et al. Preparation of insulin-loaded sodium alginate nanoparticles and its pharmacodynamics study on diabetic rats[J]. Chin Pharm J(中国药学杂志),2006,41(6):434-437.
    [13] Yang JHM,Khatri L,Mickunas M,et al. Phenotypic analysis of human lymph nodes in subjects with new-onset type 1 diabetes and healthy individuals by flow cytometry[J]. Front Immunol,2019,10:2547.
    [14] Abdel-Moneim A,Bakery HH,Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus[J]. Biomedecine Pharmacother,2018,101:287-292.
    [15] Zheng ZH,Zheng F. A complex auxiliary:IL-17/Th17 signaling during type 1 diabetes progression[J]. Mol Immunol,2019,105:16-31.
    [16] Tavira B,Barcenilla H,Wahlberg J,et al. Intralymphatic glutamic acid decarboxylase-alum administration induced Th2-like-specific immunomodulation in responder patients:a pilot clinical trial in type 1 diabetes[J]. J Diabetes Res,2018,2018:9391845.
    [17] Turner MS,Isse K,Fischer DK,et al. Low TCR signal strength induces combined expansion of Th2 and regulatory T cell populations that protect mice from the development of type 1 diabetes[J]. Diabetologia,2014,57(7):1428-1436.
    [18] Bellemore SM,Nikoopour E,Schwartz JA,et al. Preventative role of interleukin-17 producing regulatory T helper type 17 (Treg 17) cells in type 1 diabetes in non-obese diabetic mice[J]. Clin Exp Immunol,2015,182(3):261-269.
    [19] Clark M,Kroger CJ,Ke Q,et al. The role of T cell receptor signaling in the development of type 1 diabetes[J]. Front Immunol,2020,11:615371.
  • 期刊类型引用(4)

    1. 杨明翰,梁政亭,兰卫. 新疆药食同源资源毛菊苣的开发研究与前景展望. 中国新药杂志. 2023(07): 695-702 . 百度学术
    2. 阿丽米热·买买提,吾买尔江·牙合甫,陈李鑫,阿里米热·阿不来提,王晓杰,阿卜杜萨塔尔·斯马依. 菊苣种子中五种生物活性成分检测分析. 中南农业科技. 2023(06): 48-50+55 . 百度学术
    3. 廖佳露,江斌,刘称福. 3-溴黄酮的合成工艺研究. 广东化工. 2022(06): 26-27+35 . 百度学术
    4. 杨建,何倩,吴娜,阿吉艾克拜尔·艾萨,马晓丽. 毛菊苣不同部位中菊苣酸、绿原酸、单咖啡酰酒石酸的含量测定. 新疆医科大学学报. 2020(06): 792-795 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  124
  • HTML全文浏览量:  4
  • PDF下载量:  404
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-05-16
  • 刊出日期:  2021-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭