[1] |
. Front Pharmacol,2019,10:172 –184.
|
[2] |
Wigle TJ,Church WD,Majer CR,et al. Forced self-modification assays as a strategy to screen monoPARP enzymes[J]. SLAS Discov,2020,25(3):241-252.
|
[3] |
Hottiger MO,Hassa PO,Lüscher B,et al. Toward a unified nomenclature for mammalian ADP-ribosyltransferases[J]. Trends Biochem Sci,2010,35(4):208-219.
|
[4] |
Carter I,Schmaedick AV,Jin H,et al. Combining chemical genetics with proximity-dependent labeling reveals cellular targets of poly (ADP-ribose) polymerase 14 (PARP14)[J]. ACS Chem Biol,2018,13(10):2841-2848.
|
[5] |
Vyas S,Chesarone M,Todorova T,et al. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology[J]. Nat Commun,2013,4(1):2240-2253.
|
[6] |
Z.Lu A,Abo R,Ren Y,et al. Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation[J]. Biochem Pharmacol,2019,167:97-106.
|
[7] |
Gibson BA,Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs[J]. Nat Rev Mol Cell Biol,2012,13(7):411-424.
|
[8] |
Bindesboll C,Tan S,Bott D,et al. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors[J]. Biochem J,2016,473(7):899-910.
|
[9] |
Grundy GJ,Polo LM,Zeng ZH,et al. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B (Glu2)[J]. Nat Commun,2016,7:12404-12416.
|
[10] |
Rulten SL,Fisher A,Robert I,et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining[J]. Mol Cell,2011,41(1):33-45.
|
[11] |
Augustin A,Spenlehauer C,Dumond H,et al. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression[J]. J Cell Sci,2003,116(8):1551-1562.
|
[12] |
Quan JJ,Song JN,Qu JQ. PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance[J]. Tumor Biol,2015,36(11):8617-8625.
|
[13] |
Beck C,Rodriguez-Vargas JM,Boehler C,et al. PARP3,a new therapeutic target to alter Rictor/mTORC2 signaling and tumor progression in BRCA1-associated cancers[J]. Cell Death Differ,2019,26(5):1615-1630.
|
[14] |
Rodriguez-Vargas JM,Nguekeu-Zebaze L,Dantzer F. PARP3 comes to light as a prime target in cancer therapy[J]. Cell Cycle,2019,18(12):1295-1301.
|
[15] |
Deeks ED. Olaparib:first global approval[J]. Drugs,2015,75(2):231-240.
|
[16] |
Musella A,Bardhi E,Marchetti C,et al. Rucaparib:an emerging parp inhibitor for treatment of recurrent ovarian cancer[J]. Cancer Treat Rev,2018,66:7-14.
|
[17] |
Sharif AB,Amrein L,Aloyz R,et al. PARP3 inhibitors ME0328 and olaparib potentiate vinorelbine sensitization in breast cancer cell lines[J]. Breast Cancer Res Treat,2018,172(12):23-32.
|
[18] |
Mclachlan J,Banerjee S. Olaparib for the treatment of epithelial ovarian cancer[J]. Expert Opin Pharmacother,2016,17(7):995-1003.
|
[19] |
Shi JY,Bai Y,Peng KW,et al. Research progress of PARP-1 inhibitors in combination with other drugs to overcome drug resistance[J]. J China Pharm Univ (中国药科大学学报),2019,50(5):523-530.
|
[20] |
Slade D. Mitotic functions of poly (ADP-ribose) polymerases[J]. Biochem Pharmacol,2019,167:33-43.
|
[21] |
Kozaki T,Komano J,Kanbayashi D,et al. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response[J]. Proc Natl Acad Sci,2017,114(10):2681-2686.
|
[22] |
MacPherson L,Tamblyn L,Rajendra S,et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly (ADP-ribose) polymerase (TiPARP,ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation[J]. Nucleic Acids Res,2013,41(3):1604-1621.
|
[23] |
Gomez A,Bindesb?ll C,Satheesh SV,et al. Characterization of TCDD-inducible poly-ADP-ribose polymerase (TIPARP/ARTD14) catalytic activity[J]. Biochem J,2018,475(23):3827-3846.
|
[24] |
Yamada T,Horimoto H,Kameyama T,et al. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon—mediated antiviral innate defense[J]. Nat Immunol,2016,17(6):687-694.
|
[25] |
Grimaldi G,Rajendra S,Matthews J. The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long non-coding RNA,TIPARP-AS1[J]. Biochem Biophys Res Commun,2018,495(3):2356-2362.
|
[26] |
Zhang L,Cao J,Dong L,et al. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis[J]. Proc Natl Acad Sci,2020,117(24):13447-13456.
|
[27] |
Vasbinder MM,Gozgit JM,bo RP,et al. Abstract DDT02-01:RBN-2397:a first-in-class PARP7 inhibitor targeting a newly discovered cancer vulnerability in stress-signaling pathways[J]. Cancer Res,2020,80(16). DOI:10.1158/1538-7445.AM2020-DDT02-01.
|
[28] |
RBN-2397,an oral PARP7 inhibitor,in patients with solid tumors,FIH,MAD study[J].Case Med Res,2019.DOI:10.31525/ct/-nct04053673.
|
[29] |
Shao CJ,Qiu YY,Liu J,et al. PARP12 (ARTD12) suppresses hepatocellular carcinoma metastasis through interacting with FHL2 and regulating its stability[J]. Cell Death Dis,2018,9(9):856-870.
|
[30] |
Lee MK,Cheong HS,Koh Y,et al. Genetic association of PARP15 polymorphisms with clinical outcome of acute myeloid leukemia in a Korean population[J]. Genet Test Mol Biomarkers,2016,20(11):696-701.
|
[31] |
Camicia R,Bachmann SB,Winkler HC,et al. BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNγ-STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma[J]. J Cell Sci,2013,126(9):1969-1980.
|
[32] |
Aguiar R,Takeyama K,He C,et al. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly (ADP-ribose) polymerase activity[J]. J Biol Chem,2005,280(40):33756-33765.
|
[33] |
Daugherty MD,Young JM,Kerns JA,et al. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts[J]. PLoS Genet,2014,10(5):e1004403.
|
[34] |
Iwata H,Goettsch C,Sharma A,et al. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation[J]. Nat Commun,2016,7:12849.
|
[35] |
Caprara G,Prosperini E,Piccolo V,et al. PARP14 controls the nuclear accumulation of a subset of type I IFN-inducible proteins[J]. J Immunol,2018,200(7):2439-2454.
|
[36] |
Yang CS,Jividen K,Spencer A,et al. Ubiquitin modification by the E3 ligase/ADP- ribosyltransferase Dtx3L/PARP9[J]. Mol Cell,2017,66(4):503-516.
|
[37] |
Tang X,Zhang H,Long Y,et al. PARP9 is overexpressed in human breast cancer and promotes cancer cell migration[J]. Oncol Lett,2018,16(3):1215-1227.
|
[38] |
Xu H,Chai SS,Wang YH,et al. Molecular and clinical characterization of PARP9 in gliomas:a potential immunotherapeutic target[J]. CNS Neurosci Ther,2020,26(8):804-814.
|
[39] |
Schuller M,Riedel K,Gibbs-Seymour I,et al. Discovery of a selective allosteric inhibitor targeting macrodomain 2 of poly-adenosine-diphosphate-ribose polymerases 14[J]. ACS Chem Biol,2017,12(11):2866-2874.
|
[40] |
Yao N,Chen QY,Shi WH,et al. PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-κB pathway[J]. Mol Carcinog,2019,58(7):1291-1302.
|
[41] |
Camicia R,Winkler HC,Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma:a comprehensive review[J]. Mol Cancer,2015,14:207.
|
[42] |
Barbarulo A,Iansante V,Chaidos A,et al. Poly (ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma[J]. Oncogene,2012,32(36):4231-4242.
|
[43] |
Iansante V,Choy PM,Fung SW,et al. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation[J]. Nat Commun,2015,6:7882-7897.
|
[44] |
Cho SH,Ahn AK,Bhargava P,et al. Glycolytic rate and lymphomagenesis depend on PARP14,an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family[J]. Proc Natl Acad Sci,2011,108(38):15972-15977.
|
[45] |
Moustakim M,Riedel K,Schuller M,et al. Discovery of a novel allosteric inhibitor scaffold for polyadenosine-diphosphate-ribose polymerase 14 (PARP14) macrodomain 2[J]. Bioorg Med Chem,2018,26(11):2965-2972.
|
[46] |
Upton K,Meyers M,Thorsell AG,et al. Design and synthesis of potent inhibitors of the mono(ADP-ribosyl) transferase,PARP14[J]. Bioorg Med Chem Lett,2017,27(13):2907-2911.
|
[47] |
Yoneyama M,Matsumoto S,Toyoda Y,et al. Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation[J]. Biochem Biophys Res Commun,2017,486(3):626-631.
|
[48] |
He FH,Tsuda K,Takahashi M,et al. Structural insight into the interaction of ADP-ribose with the PARP WWE domains[J]. FEBS Lett,2012,586(21):3858-3864.
|
[49] |
Schenkel L,Molina J,Swinger K,et al. Abstract 1038:a potent and selective PARP14 inhibitor decreases pro-tumor macrophage function and elicits inflammatory responses in tumor explants[C]. //Tumor Biology.American Association for Cancer Research,2020; Philadelphia,PA,2020.
|
[50] |
Eckei L,Krieg S,Bütepage M,et al. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases[J]. Sci Rep,2017,7:41746-41764.
|
[51] |
Yuen LH,Dana S,Liu Y,et al. A focused DNA-encoded chemical library for the discovery of inhibitors of NAD+-dependent enzymes[J]. J Am Chem Soc,2019,141(13):5169-5181.
|
[52] |
Han L,Shi H,Luo Y,et al. Gene signature based on B cell predicts clinical outcome of radiotherapy and immunotherapy for patients with lung adenocarcinoma[J]. Cancer Med,2020,9(24):9581-9594.
|
[53] |
Lin L,Wang D,Cao N,et al. Whole-transcriptome analysis of hepatocellular carcinoma[J]. Med Oncol,2013,30(4):736-747.
|
[54] |
Liu Y,Snow BE,Kickhoefer VA,et al. Vault poly (ADP-Ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo[J]. Mol Cell Biol,2004,24(12):5314-5323.
|
[55] |
Amé JC,Spenlehauer C,Murcia GD. The PARP superfamily[J]. BioEssays,2004,26(8):882-893.
|
[56] |
Ikeda Y,Kiyotani K,Yew PY,et al. Germline PARP4 mutations in patients with primary thyroid and breast cancers[J]. Endocr Relat Cancer,2016,23(3):171-179.
|
[57] |
Kickhoefer VA,Siva AC,Kedersha NL,et al. The 193-Kd vault protein,VPARP,is a novel poly (ADP-ribose) polymerase[J]. J Cell Biol,1999,146(5):917-928.
|
[58] |
Wang TT,Lu J,Xu L,et al. Whole genome sequencing of colorectal neuroendocrine tumors and in-depth mutational analyses[J]. Med Oncol,2020,37(6):56-72.
|
[59] |
Prawira A,Munusamy P,Yuan J,et al. Assessment of PARP4 as a candidate breast cancer susceptibility gene[J]. Breast Cancer Res Treat,2019,177(23):145-153.
|
[60] |
Kaufmann M,Feijs K,Lüscher B. Function and regulation of the mono-ADP-ribosyltransferase ARTD10[J]. Curr Top Microbiol Immunol,2015,384:167-188.
|
[61] |
Holechek J,Lease R,Thorsell AG,et al. Design,synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl) transferases PARP10 and PARP14[J]. Bioorg Med Chem Lett,2018,28(11):2050-2054.
|
[62] |
Schleicher EM,Galvan AM,Imamura KY,et al. PARP10 promotes cellular proliferation and tumorigenesis by alleviating replication stress[J]. Nucleic Acids Res,2018,46(17):8908-8916.
|
[63] |
Tian L,Yao K,Liu K,et al. PLK1/NF-κB feedforward circuit antagonizes the mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression[J]. Oncogene,2020,39(12):3145-3162.
|
[64] |
Wu CF,Xiao M,Wang YL,et al. PARP10 influences the proliferation of colorectal carcinoma cells,a preliminary study[J]. Mol Biol,2020,54(2):220-228.
|
[65] |
Nicolae CM,Aho ER,Vlahos A,et al. The ADP-ribosyltransferase PARP10/ARTD10 interacts with proliferating cell nuclear antigen (PCNA) and is required for DNA damage tolerance[J]. J Biol Chem,2014,289(19):13627-13637.
|
[66] |
Venkannagari H,Verheugd P,Koivunen J,et al. Small-molecule chemical probe rescues cells from mono-ADP-ribosyltransferase ARTD10/PARP10-induced apoptosis and sensitizes cancer cells to DNA damage[J]. Cell Chem Biol,2016,23(10):1251-1260.
|
[67] |
Murthy S,Desantis J,Verheugd P,et al. 4-(Phenoxy) and 4-(benzyloxy) benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10[J]. Eur J Med Chem,2018,156:93-102.
|
[68] |
Morgan RK,Kirby IT,Schmaedick AV,et al. Rational design of cell-active inhibitors of PARP10[J]. ACS Med Chem Lett,2019,10(1):74-79.
|
[69] |
Qi G,Kudo Y,Tang B,et al. PARP6 acts as a tumor suppressor via downregulating survivin expression in colorectal cancer[J]. Oncotarget,2016,7(14):18812-18824.
|
[70] |
Wang H,Li S,Luo X,et al. Knockdown of PARP6 or survivin promotes cell apoptosis and inhibits cell invasion of colorectal adenocarcinoma cells[J]. Oncol Rep,2017,37(4):2245-2251.
|
[71] |
Atasheva S,Akhrymuk M,Frolova EI,et al. New PARP gene with an anti-alphavirus function[J]. J Virol,2012,86(15):8147-8160.
|
[72] |
Kirby IT,Kojic A,Arnold MR,et al. A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity[J]. Cell Chem Biol,2018,25(12):1547-1553.
|
[73] |
Jwa M,Chang P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response[J]. Nat Cell Biol,2012,14(11):1223-1230.
|
[74] |
Wang J,Zhu C,Song D,et al. Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity[J]. Cell Death Discov,2017,3:17034-17043.
|