• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

单-ADP核糖转移酶家族及其抑制剂在肿瘤治疗中的研究进展

李茵, 古宏峰, 邹毅, 王淑平, 徐云根

李茵, 古宏峰, 邹毅, 王淑平, 徐云根. 单-ADP核糖转移酶家族及其抑制剂在肿瘤治疗中的研究进展[J]. 中国药科大学学报, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601
引用本文: 李茵, 古宏峰, 邹毅, 王淑平, 徐云根. 单-ADP核糖转移酶家族及其抑制剂在肿瘤治疗中的研究进展[J]. 中国药科大学学报, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601
LI Yin, GU Hongfeng, ZOU Yi, WANG Shuping, XU Yungen. Research progress of mono-(ADP-ribosyl) transferase family and their inhibitors in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601
Citation: LI Yin, GU Hongfeng, ZOU Yi, WANG Shuping, XU Yungen. Research progress of mono-(ADP-ribosyl) transferase family and their inhibitors in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601

单-ADP核糖转移酶家族及其抑制剂在肿瘤治疗中的研究进展

基金项目: 国家自然科学基金资助项目(No.81502928);江苏省优秀科技创新团队资助项目(2015)

Research progress of mono-(ADP-ribosyl) transferase family and their inhibitors in tumor therapy

Funds: This study was supported by the National Natural Science Foundation of China (No. 81502928) and the Outstanding Scientific and Technological Innovation Team Projects of Jiangsu Province (2015)
  • 摘要: 多聚腺苷二磷酸核糖聚合酶(PARPs)在DNA修复与细胞凋亡中发挥着重要的作用。该酶家族中有一类PARPs通过催化和转移单个ADP-核糖来调控各种细胞反应,被称为单-ADP核糖转移酶(MARTs)。大部分MARTs在肿瘤中过度表达,与肿瘤的发生发展密切相关。本文重点介绍了在肿瘤中过度表达的MARTs,以其结构域的差异进行分类,对其现有的作用机制、与肿瘤的密切关系、在肿瘤治疗中的潜在价值以及相应抑制剂的研究进展进行综述。这些靶点有望为精准医疗时代的肿瘤治疗提供新的研究思路。
    Abstract: Poly-adenosine diphosphate ribose polymerases (PARPs) play an important role in DNA repair and apoptosis.Among them, mono-(ADP-ribosyl) transferase (MARTs) can regulate various cell reactions by catalyzing and transferring single ADP-ribose.Most MARTs are highly expressed in cancers, which is closely related to the occurrence and progression of cancers.This review introduces the MARTs that are highly expressed in cancers, classifies them according to the differences of their structural domains, and reviews their known mechanism, their close relationship with cancers, their potential value in cancer therapy and the research progress of corresponding inhibitors.These targets are expected to provide new research ideas for cancer therapy in the era of precision medicine.
  • [1] . Front Pharmacol,2019,10:172 –184.
    [2] Wigle TJ,Church WD,Majer CR,et al. Forced self-modification assays as a strategy to screen monoPARP enzymes[J]. SLAS Discov,2020,25(3):241-252.
    [3] Hottiger MO,Hassa PO,Lüscher B,et al. Toward a unified nomenclature for mammalian ADP-ribosyltransferases[J]. Trends Biochem Sci,2010,35(4):208-219.
    [4] Carter I,Schmaedick AV,Jin H,et al. Combining chemical genetics with proximity-dependent labeling reveals cellular targets of poly (ADP-ribose) polymerase 14 (PARP14)[J]. ACS Chem Biol,2018,13(10):2841-2848.
    [5] Vyas S,Chesarone M,Todorova T,et al. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology[J]. Nat Commun,2013,4(1):2240-2253.
    [6] Z.Lu A,Abo R,Ren Y,et al. Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation[J]. Biochem Pharmacol,2019,167:97-106.
    [7] Gibson BA,Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs[J]. Nat Rev Mol Cell Biol,2012,13(7):411-424.
    [8] Bindesboll C,Tan S,Bott D,et al. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors[J]. Biochem J,2016,473(7):899-910.
    [9] Grundy GJ,Polo LM,Zeng ZH,et al. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B (Glu2)[J]. Nat Commun,2016,7:12404-12416.
    [10] Rulten SL,Fisher A,Robert I,et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining[J]. Mol Cell,2011,41(1):33-45.
    [11] Augustin A,Spenlehauer C,Dumond H,et al. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression[J]. J Cell Sci,2003,116(8):1551-1562.
    [12] Quan JJ,Song JN,Qu JQ. PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance[J]. Tumor Biol,2015,36(11):8617-8625.
    [13] Beck C,Rodriguez-Vargas JM,Boehler C,et al. PARP3,a new therapeutic target to alter Rictor/mTORC2 signaling and tumor progression in BRCA1-associated cancers[J]. Cell Death Differ,2019,26(5):1615-1630.
    [14] Rodriguez-Vargas JM,Nguekeu-Zebaze L,Dantzer F. PARP3 comes to light as a prime target in cancer therapy[J]. Cell Cycle,2019,18(12):1295-1301.
    [15] Deeks ED. Olaparib:first global approval[J]. Drugs,2015,75(2):231-240.
    [16] Musella A,Bardhi E,Marchetti C,et al. Rucaparib:an emerging parp inhibitor for treatment of recurrent ovarian cancer[J]. Cancer Treat Rev,2018,66:7-14.
    [17] Sharif AB,Amrein L,Aloyz R,et al. PARP3 inhibitors ME0328 and olaparib potentiate vinorelbine sensitization in breast cancer cell lines[J]. Breast Cancer Res Treat,2018,172(12):23-32.
    [18] Mclachlan J,Banerjee S. Olaparib for the treatment of epithelial ovarian cancer[J]. Expert Opin Pharmacother,2016,17(7):995-1003.
    [19] Shi JY,Bai Y,Peng KW,et al. Research progress of PARP-1 inhibitors in combination with other drugs to overcome drug resistance[J]. J China Pharm Univ (中国药科大学学报),2019,50(5):523-530.
    [20] Slade D. Mitotic functions of poly (ADP-ribose) polymerases[J]. Biochem Pharmacol,2019,167:33-43.
    [21] Kozaki T,Komano J,Kanbayashi D,et al. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response[J]. Proc Natl Acad Sci,2017,114(10):2681-2686.
    [22] MacPherson L,Tamblyn L,Rajendra S,et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly (ADP-ribose) polymerase (TiPARP,ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation[J]. Nucleic Acids Res,2013,41(3):1604-1621.
    [23] Gomez A,Bindesb?ll C,Satheesh SV,et al. Characterization of TCDD-inducible poly-ADP-ribose polymerase (TIPARP/ARTD14) catalytic activity[J]. Biochem J,2018,475(23):3827-3846.
    [24] Yamada T,Horimoto H,Kameyama T,et al. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon—mediated antiviral innate defense[J]. Nat Immunol,2016,17(6):687-694.
    [25] Grimaldi G,Rajendra S,Matthews J. The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long non-coding RNA,TIPARP-AS1[J]. Biochem Biophys Res Commun,2018,495(3):2356-2362.
    [26] Zhang L,Cao J,Dong L,et al. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis[J]. Proc Natl Acad Sci,2020,117(24):13447-13456.
    [27] Vasbinder MM,Gozgit JM,bo RP,et al. Abstract DDT02-01:RBN-2397:a first-in-class PARP7 inhibitor targeting a newly discovered cancer vulnerability in stress-signaling pathways[J]. Cancer Res,2020,80(16). DOI:10.1158/1538-7445.AM2020-DDT02-01.
    [28] RBN-2397,an oral PARP7 inhibitor,in patients with solid tumors,FIH,MAD study[J].Case Med Res,2019.DOI:10.31525/ct/-nct04053673.
    [29] Shao CJ,Qiu YY,Liu J,et al. PARP12 (ARTD12) suppresses hepatocellular carcinoma metastasis through interacting with FHL2 and regulating its stability[J]. Cell Death Dis,2018,9(9):856-870.
    [30] Lee MK,Cheong HS,Koh Y,et al. Genetic association of PARP15 polymorphisms with clinical outcome of acute myeloid leukemia in a Korean population[J]. Genet Test Mol Biomarkers,2016,20(11):696-701.
    [31] Camicia R,Bachmann SB,Winkler HC,et al. BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNγ-STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma[J]. J Cell Sci,2013,126(9):1969-1980.
    [32] Aguiar R,Takeyama K,He C,et al. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly (ADP-ribose) polymerase activity[J]. J Biol Chem,2005,280(40):33756-33765.
    [33] Daugherty MD,Young JM,Kerns JA,et al. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts[J]. PLoS Genet,2014,10(5):e1004403.
    [34] Iwata H,Goettsch C,Sharma A,et al. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation[J]. Nat Commun,2016,7:12849.
    [35] Caprara G,Prosperini E,Piccolo V,et al. PARP14 controls the nuclear accumulation of a subset of type I IFN-inducible proteins[J]. J Immunol,2018,200(7):2439-2454.
    [36] Yang CS,Jividen K,Spencer A,et al. Ubiquitin modification by the E3 ligase/ADP- ribosyltransferase Dtx3L/PARP9[J]. Mol Cell,2017,66(4):503-516.
    [37] Tang X,Zhang H,Long Y,et al. PARP9 is overexpressed in human breast cancer and promotes cancer cell migration[J]. Oncol Lett,2018,16(3):1215-1227.
    [38] Xu H,Chai SS,Wang YH,et al. Molecular and clinical characterization of PARP9 in gliomas:a potential immunotherapeutic target[J]. CNS Neurosci Ther,2020,26(8):804-814.
    [39] Schuller M,Riedel K,Gibbs-Seymour I,et al. Discovery of a selective allosteric inhibitor targeting macrodomain 2 of poly-adenosine-diphosphate-ribose polymerases 14[J]. ACS Chem Biol,2017,12(11):2866-2874.
    [40] Yao N,Chen QY,Shi WH,et al. PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-κB pathway[J]. Mol Carcinog,2019,58(7):1291-1302.
    [41] Camicia R,Winkler HC,Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma:a comprehensive review[J]. Mol Cancer,2015,14:207.
    [42] Barbarulo A,Iansante V,Chaidos A,et al. Poly (ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma[J]. Oncogene,2012,32(36):4231-4242.
    [43] Iansante V,Choy PM,Fung SW,et al. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation[J]. Nat Commun,2015,6:7882-7897.
    [44] Cho SH,Ahn AK,Bhargava P,et al. Glycolytic rate and lymphomagenesis depend on PARP14,an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family[J]. Proc Natl Acad Sci,2011,108(38):15972-15977.
    [45] Moustakim M,Riedel K,Schuller M,et al. Discovery of a novel allosteric inhibitor scaffold for polyadenosine-diphosphate-ribose polymerase 14 (PARP14) macrodomain 2[J]. Bioorg Med Chem,2018,26(11):2965-2972.
    [46] Upton K,Meyers M,Thorsell AG,et al. Design and synthesis of potent inhibitors of the mono(ADP-ribosyl) transferase,PARP14[J]. Bioorg Med Chem Lett,2017,27(13):2907-2911.
    [47] Yoneyama M,Matsumoto S,Toyoda Y,et al. Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation[J]. Biochem Biophys Res Commun,2017,486(3):626-631.
    [48] He FH,Tsuda K,Takahashi M,et al. Structural insight into the interaction of ADP-ribose with the PARP WWE domains[J]. FEBS Lett,2012,586(21):3858-3864.
    [49] Schenkel L,Molina J,Swinger K,et al. Abstract 1038:a potent and selective PARP14 inhibitor decreases pro-tumor macrophage function and elicits inflammatory responses in tumor explants[C]. //Tumor Biology.American Association for Cancer Research,2020; Philadelphia,PA,2020.
    [50] Eckei L,Krieg S,Bütepage M,et al. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases[J]. Sci Rep,2017,7:41746-41764.
    [51] Yuen LH,Dana S,Liu Y,et al. A focused DNA-encoded chemical library for the discovery of inhibitors of NAD+-dependent enzymes[J]. J Am Chem Soc,2019,141(13):5169-5181.
    [52] Han L,Shi H,Luo Y,et al. Gene signature based on B cell predicts clinical outcome of radiotherapy and immunotherapy for patients with lung adenocarcinoma[J]. Cancer Med,2020,9(24):9581-9594.
    [53] Lin L,Wang D,Cao N,et al. Whole-transcriptome analysis of hepatocellular carcinoma[J]. Med Oncol,2013,30(4):736-747.
    [54] Liu Y,Snow BE,Kickhoefer VA,et al. Vault poly (ADP-Ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo[J]. Mol Cell Biol,2004,24(12):5314-5323.
    [55] Amé JC,Spenlehauer C,Murcia GD. The PARP superfamily[J]. BioEssays,2004,26(8):882-893.
    [56] Ikeda Y,Kiyotani K,Yew PY,et al. Germline PARP4 mutations in patients with primary thyroid and breast cancers[J]. Endocr Relat Cancer,2016,23(3):171-179.
    [57] Kickhoefer VA,Siva AC,Kedersha NL,et al. The 193-Kd vault protein,VPARP,is a novel poly (ADP-ribose) polymerase[J]. J Cell Biol,1999,146(5):917-928.
    [58] Wang TT,Lu J,Xu L,et al. Whole genome sequencing of colorectal neuroendocrine tumors and in-depth mutational analyses[J]. Med Oncol,2020,37(6):56-72.
    [59] Prawira A,Munusamy P,Yuan J,et al. Assessment of PARP4 as a candidate breast cancer susceptibility gene[J]. Breast Cancer Res Treat,2019,177(23):145-153.
    [60] Kaufmann M,Feijs K,Lüscher B. Function and regulation of the mono-ADP-ribosyltransferase ARTD10[J]. Curr Top Microbiol Immunol,2015,384:167-188.
    [61] Holechek J,Lease R,Thorsell AG,et al. Design,synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl) transferases PARP10 and PARP14[J]. Bioorg Med Chem Lett,2018,28(11):2050-2054.
    [62] Schleicher EM,Galvan AM,Imamura KY,et al. PARP10 promotes cellular proliferation and tumorigenesis by alleviating replication stress[J]. Nucleic Acids Res,2018,46(17):8908-8916.
    [63] Tian L,Yao K,Liu K,et al. PLK1/NF-κB feedforward circuit antagonizes the mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression[J]. Oncogene,2020,39(12):3145-3162.
    [64] Wu CF,Xiao M,Wang YL,et al. PARP10 influences the proliferation of colorectal carcinoma cells,a preliminary study[J]. Mol Biol,2020,54(2):220-228.
    [65] Nicolae CM,Aho ER,Vlahos A,et al. The ADP-ribosyltransferase PARP10/ARTD10 interacts with proliferating cell nuclear antigen (PCNA) and is required for DNA damage tolerance[J]. J Biol Chem,2014,289(19):13627-13637.
    [66] Venkannagari H,Verheugd P,Koivunen J,et al. Small-molecule chemical probe rescues cells from mono-ADP-ribosyltransferase ARTD10/PARP10-induced apoptosis and sensitizes cancer cells to DNA damage[J]. Cell Chem Biol,2016,23(10):1251-1260.
    [67] Murthy S,Desantis J,Verheugd P,et al. 4-(Phenoxy) and 4-(benzyloxy) benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10[J]. Eur J Med Chem,2018,156:93-102.
    [68] Morgan RK,Kirby IT,Schmaedick AV,et al. Rational design of cell-active inhibitors of PARP10[J]. ACS Med Chem Lett,2019,10(1):74-79.
    [69] Qi G,Kudo Y,Tang B,et al. PARP6 acts as a tumor suppressor via downregulating survivin expression in colorectal cancer[J]. Oncotarget,2016,7(14):18812-18824.
    [70] Wang H,Li S,Luo X,et al. Knockdown of PARP6 or survivin promotes cell apoptosis and inhibits cell invasion of colorectal adenocarcinoma cells[J]. Oncol Rep,2017,37(4):2245-2251.
    [71] Atasheva S,Akhrymuk M,Frolova EI,et al. New PARP gene with an anti-alphavirus function[J]. J Virol,2012,86(15):8147-8160.
    [72] Kirby IT,Kojic A,Arnold MR,et al. A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity[J]. Cell Chem Biol,2018,25(12):1547-1553.
    [73] Jwa M,Chang P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response[J]. Nat Cell Biol,2012,14(11):1223-1230.
    [74] Wang J,Zhu C,Song D,et al. Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity[J]. Cell Death Discov,2017,3:17034-17043.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  456
  • HTML全文浏览量:  15
  • PDF下载量:  728
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-05-05
  • 修回日期:  2021-05-30
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭