• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

Ⅰ型CRISPR-Cas系统效应物的结构特征及其在基因编辑领域的应用

张钰雯, 俞晨霖, 戴心忱, 肖易倍, 陆美玲

张钰雯, 俞晨霖, 戴心忱, 肖易倍, 陆美玲. Ⅰ型CRISPR-Cas系统效应物的结构特征及其在基因编辑领域的应用[J]. 中国药科大学学报, 2021, 52(6): 675-683. DOI: 10.11665/j.issn.1000-5048.20210604
引用本文: 张钰雯, 俞晨霖, 戴心忱, 肖易倍, 陆美玲. Ⅰ型CRISPR-Cas系统效应物的结构特征及其在基因编辑领域的应用[J]. 中国药科大学学报, 2021, 52(6): 675-683. DOI: 10.11665/j.issn.1000-5048.20210604
ZHANG Yuwen, YU Chenlin, DAI Xinchen, XIAO Yibei, LU Meiling. Structural feature of type I CRISPR-Cas system and its application in gene editing[J]. Journal of China Pharmaceutical University, 2021, 52(6): 675-683. DOI: 10.11665/j.issn.1000-5048.20210604
Citation: ZHANG Yuwen, YU Chenlin, DAI Xinchen, XIAO Yibei, LU Meiling. Structural feature of type I CRISPR-Cas system and its application in gene editing[J]. Journal of China Pharmaceutical University, 2021, 52(6): 675-683. DOI: 10.11665/j.issn.1000-5048.20210604

Ⅰ型CRISPR-Cas系统效应物的结构特征及其在基因编辑领域的应用

基金项目: 国家自然科学基金资助项目(No.31970547);江苏省自然科学基金资助项目(No.BK20190552)

Structural feature of type I CRISPR-Cas system and its application in gene editing

Funds: This study was supported by the National Natural Science Foundation of China (No.31970547) and the Natural Science Foundation of Jiangsu Province (No.BK20190552)
  • 摘要: CRISPR-Cas(clustered regularly interspaced short palindromic repeats and CRISPR-associated)系统是在细菌和古细菌基因组中发现的一种由RNA介导、抵挡外源核酸入侵的适应性免疫系统。通过对靶标位点的特异性识别,结合细胞自身的DNA修复功能或转录调控机制,CRISPR-Cas系统可高效编辑靶标序列或精准调控基因的表达,目前已被开发成为基因编辑领域的有力工具。根据效应复合物组成形式的不同,CRISPR-Cas系统分为1类(Ⅰ型、Ⅳ型和Ⅲ型)和2类(Ⅱ型、Ⅴ型和Ⅵ型)两大类。2类中的CRISPR-Cas9系统作为最早发现且被研究透彻的系统之一,应用范围已十分广泛;而1类系统虽占整个CRISPR-Cas系统的90%,但目前还未有开发成熟的应用工具。本综述以1类中的Ⅰ型系统为例,从亚型分类、效应复合物组装与结构、Cas3蛋白的切割降解机制以及近几年在基因编辑中的应用等方面进行总结,为更好地研究该类别的作用机制及后期的开发应用提供新的思路和方法。
    Abstract: The CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated) system is an "adaptive immune system" found in the genomes of bacteria and archaea which is mediated by RNA and resists foreign nucleic acid invasion.Take advantage of specific recognition of target nucleic acid, CRISPR-Cas system can efficiently edit their target site or accurately regulate gene expression, and now have been developed into a powerful tool for gene editing.According to the different compositions of the effector complex, the system has been divided into two categories: class 1 (type I, type IV, and type III) and class 2 (type II, type V, and type VI).Class 2 system, like the CRISPR-Cas9, is widely used in basic research due to the earliest discovery and best research.However, class 1 has not been maturely developed and utilized though it makes up 90% of the entire CRISPR-Cas system.In this essay, the classification of subtype, the assembly of Cascade complex, the cleavage and degradation mechanism of Cas3, and the application in gene editing of class 1 type I CRISPR-Cas system will be discussed and summarized to provide new ideas and methods for further mechanism studying and application of this category.
  • [1] . J Bacteriol,1987,169(12):5429-5433.
    [2] Jansen R,JDvEmbden,Gaastra W,et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol,2002,43(6):1565-1575.
    [3] Kim S,Loeff L,Colombo S,et al. Selective loading and processing of prespacers for precise CRISPR adaptation[J]. Nature,2020,579(7797):141-145.
    [4] Reimann V,Alkhnbashi OS,Saunders SJ,et al. Structural constraints and enzymatic promiscuity in the Cas6-dependent generation of crRNAs[J]. Nucleic Acids Res,2017,45(2):915-925.
    [5] Musharova O,Sitnik V,Vlot M,et al. Systematic analysis of type I‐E Escherichia coli CRISPR‐Cas PAM sequences ability to promote interference and primed adaptation[J]. Mol Microbiol,2019,111(6):1558-1570.
    [6] Makarova KS,Wolf YI,Iranzo J,et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nat Rev Microbiol,2020,18(2):67-83.
    [7] Nu?ez JK,Kranzusch PJ,Noeske J,et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity[J]. Nat Struct Mol Biol,2014,21(6):528-534.
    [8] Sinkunas T,Gasiunas G,Fremaux C,et al. Cas3 is a single-stranded DNA nuclease and ATP‐dependent helicase in the CRISPR/Cas immune system[J]. EMBO J,2011,30(7):1335-1342.
    [9] Xiao Y,Luo M,Hayes RP,et al. Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR-Cas system[J]. Cell,2017,170(1):48-60.
    [10] Jesser R,Behler J,Benda C,et al. Biochemical analysis of the Cas6-1 RNA endonuclease associated with the subtype I-D CRISPR-Cas system in Synechocystis sp. PCC 6803[J]. RNA Biol,2019,16(4):481-491.
    [11] Makarova KS,Wolf YI,Alkhnbashi OS,et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol,2015,13(11):722-736.
    [12] Makarova KS,Koonin EV. Annotation and classification of CRISPR-Cas systems[J]. Methods Mol Biol,2015,1311:47-75.
    [13] Nam KH,Haitjema C,Liu X,et al. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system[J]. Structure,2012,20(9):1574-1584.
    [14] Fagerlund RD,Wilkinson ME,Klykov O,et al. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex[J]. Proc Natl Acad Sci U S A,2017,114(26):E5122-E5128.
    [15] McBride TM,Schwartz EA,Kumar A,et al. Diverse CRISPR-Cas complexes require independent translation of small and large subunits from a single gene[J]. Mol Cell,2020,80(6):971-979.
    [16] Zhao H,Sheng G,Wang J,et al. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli[J]. Nature,2014,515(7525):147-150.
    [17] Dwarakanath S,Brenzinger S,Gleditzsch D,et al. Interference activity of a minimal type I CRISPR-Cas system from Shewanella putrefaciens[J]. Nucleic Acids Res,2015,43(18):8913-8923.
    [18] Gu DH,Ha SC,Kim JS. A CRISPR RNA is closely related with the size of the Cascade nucleoprotein complex[J]. Front Microbiol,2019,10:2458.
    [19] Songailiene I,Rutkauskas M,Sinkunas T,et al. Decision-making in Cascade complexes harboring crRNAs of altered length[J]. Cell Rep,2019,28(12):3157-3166.
    [20] Gleditzsch D,Müller-Esparza H,Pausch P,et al. Modulating the Cascade architecture of a minimal type I-F CRISPR-Cas system[J]. Nucleic Acids Res,2016,44(12):5872-5882.
    [21] Pausch P,Müller-Esparza H,Gleditzsch D,et al. Structural variation of type I-F CRISPR RNA guided DNA surveillance[J]. Mol Cell,2017,67(4):622-632.
    [22] O′Brien RE,Santos IC,Wrapp D,et al. Structural basis for assembly of non-canonical small subunits into type I-C Cascade[J]. Nat Commun,2020,11(1):5931.
    [23] Lin J,Fuglsang A,Kjeldsen AL,et al. DNA targeting by subtype I-D CRISPR-Cas shows type I and type III features[J]. Nucleic Acids Res,2020,48(18):10470-10478.
    [24] Ding Y,Li H,Chen L-L,et al. Recent advances in genome editing using CRISPR/Cas9[J]. Front Plant Sci,2016,7:703.
    [25] Jore MM,Lundgren M,van Duijn E,et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade[J]. Nat Struct Mol Biol,2011,18(5):529-536.
    [26] Cooper LA,Stringer AM,Wade JT. Determining the specificity of cascade binding,interference,and primed adaptation in vivo in the Escherichia coli type I-E CRISPR-Cas system[J]. mBio,2018,9(2):e02100-17.
    [27] Hochstrasser ML,Taylor DW,Kornfeld JE,et al. DNA targeting by a minimal CRISPR RNA-guided cascade[J]. Mol Cell,2016,63(5):840-851.
    [28] Xiao Y,Luo M,Dolan AE,et al. Structure basis for RNA-guided DNA degradation by Cascade and Cas3[J]. Science,2018,361(6397):eaat0839.
    [29] Li Y,Pan S,Zhang Y,et al. Harnessing type I and type III CRISPR-Cas systems for genome editing[J]. Nucleic Acids Res,2016,44(4):e34.
    [30] Cheng F,Gong L,Zhao D,et al. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon[J]. J Genet Genomics,2017,44(11):541-548.
    [31] Cs?rg? B,León LM,Chau-Ly IJ,et al. A compact Cascade-Cas3 system for targeted genome engineering[J]. Nat Methods,2020,17(12):1183-1190.
    [32] Minkenberg B,Wheatley M,Yang Y. CRISPR/Cas9-enabled multiplex genome editing and its application[J]. Prog Mol Biol Transl Sci,2017,149:111-132.
    [33] Pan X,Wu Z,Qi X. Research status and application progress of CRISPR/Cas9 delivery system[J]. J China Pharm Univ(中国药科大学学报),2020,51(1):10-18.
    [34] Tuladhar R,Yeu Y,Piazza JT,et al. CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation[J]. Nat Commun,2019,10(1):4056.
    [35] Smits AH,Ziebell F,Joberty G,et al. Biological plasticity rescues target activity in CRISPR knock outs[J]. Nat Methods,2019,16(11):1087-1093.
    [36] Dolan AE,Hou Z,Xiao Y,et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas[J]. Mol Cell,2019,74(5):936-950.
    [37] Cameron P,Coons MM,Klompe SE,et al. Harnessing type I CRISPR-Cas systems for genome engineering in human cells[J]. Nat Biotechnol,2019,37(12):1471-1477.
    [38] Chen Y,Liu J,Zhi S,et al. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells[J]. Nat Commun,2020,11(1):3136.
    [39] Pickar-Oliver A,Black JB,Lewis MM,et al. Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells[J]. Nat Biotechnol,2019,37(12):1493-1501.
    [40] Luo ML,Jackson RN,Denny SR,et al. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers[J]. Nucleic Acids Res,2016,44(15):7385-7394.
    [41] Künne T,Zhu Y,da Silva F,et al. Role of nucleotide identity in effective CRISPR target escape mutations[J]. Nucleic Acids Res,2018,46(19):10395-10404.
    [42] Fu BXH,Wainberg M,Kundaje A,et al. High-throughput characterization of Cascade type I-E CRISPR guide efficacy reveals unexpected PAM diversity and target sequence preferences[J]. Genetics,2017,206(4):1727-1738.
  • 期刊类型引用(10)

    1. 陈俊锟,崔晚香,卜庆,万佩里,姚励功,梁林富,郭跃伟. 短指软珊瑚Sinularia sp.的多骨架类型萜类成分和生物活性研究. 中草药. 2023(05): 1370-1376 . 百度学术
    2. 康华丽,刘俊玲. 非小细胞肺癌组织中THRSP、ACACA的表达及其与临床预后的关系. 实用癌症杂志. 2023(12): 1951-1955 . 百度学术
    3. 吴建美,尉迟邈,尹幸念,钱毅春,樊树理. 马铃薯抗性淀粉对高脂血症大鼠肝脏组织固醇调节元件结合蛋白-1c及裂解激活蛋白以及乙酰辅酶A羧化酶1表达的影响. 环境与健康杂志. 2023(04): 305-309+377 . 百度学术
    4. 杨青,孙子羽,满都拉,王佳,刘瑾,金晶晶,陈忠军. 响应面法优化重组谷氨酸棒杆菌G-BC产脂肪酸的培养条件. 中国油脂. 2022(07): 121-124+131 . 百度学术
    5. 王登杰,王文娟,邹忠兰,张爱华. LXRα/SREBP-1c在砷致大鼠脂代谢紊乱中的作用. 中华地方病学杂志. 2022(07): 517-523 . 百度学术
    6. 吴建民,王建发,武瑞. 瘤胃微生物在奶牛乳脂肪合成中的调节作用研究进展. 中国兽医学报. 2021(01): 181-185 . 百度学术
    7. 杨青,孙子羽,满都拉,王佳,刘瑾,金晶晶,陈忠军. 异源表达乙酰辅酶A羧化酶对大肠杆菌产脂肪酸的影响. 食品研究与开发. 2021(23): 150-155 . 百度学术
    8. 邢海亮,董训赞,韩本勇,耿树香,宁德鲁,马婷,余旭亚. 二氧化碳联合核桃壳提取液促进单针藻Monoraphidium sp.QLZ-3的生长和油脂积累. 化工进展. 2020(04): 1575-1582 . 百度学术
    9. 李硕熙,袁星星,杨磊,李丹丹,王炳予. 基于网络药理学方法分析芪参汤治疗非酒精性脂肪性肝病的作用机制及实验验证. 海南医学院学报. 2020(14): 1074-1082 . 百度学术
    10. 崔佳丽,游金坤,李洁实,乔腾生,董训赞. 核桃壳提取液用于单针藻Monoraphidium sp. QLZ-3培养产油脂. 微生物学报. 2020(11): 2487-2497 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 22
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-04-20
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭