[1] |
Esfahani K, Roudaia L, Buhlaiga N, et al. A review of cancer immunotherapy: from the past, to the present, to the future[J]. Curr Oncol, 2020, 27(Suppl 2): S87-S97.
|
[2] |
Feins S, Kong WM, Williams EF, et al. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer[J]. Am J Hematol, 2019, 94(S1): S3-S9.
|
[3] |
K?hl U, Arsenieva S, Holzinger A, et al. CAR T cells in trials: recent achievements and challenges that remain in the production of modified T cells for clinical applications[J]. Hum Gene Ther, 2018, 29(5): 559-568.
|
[4] |
Ruella M, Xu J, Barrett DM, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell[J]. Nat Med, 2018, 24(10): 1499-1503.
|
[5] |
Depil S, Duchateau P, Grupp SA, et al. ''Off-the-shelf'' allogeneic CAR T cells: development and challenges[J]. Nat Rev Drug Discov, 2020, 19(3): 185-199.
|
[6] |
Qasim W, Zhan H, Samarasinghe S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells[J]. Sci Transl Med, 2017, 9(374): eaaj2013.
|
[7] |
Caldwell KJ, Gottschalk S, Talleur AC. Allogeneic CAR cell therapy-more than a pipe dream[J]. Front Immunol, 2021, 11: 618427.
|
[8] |
Hess NJ, Brown ME, Capitini CM. GVHD pathogenesis, prevention and treatment: lessons from humanized mouse transplant models[J]. Front Immunol, 2021, 12: 723544.
|
[9] |
Martin PJ, Levine DM, Storer BE, et al. Genome-wide minor histocompatibility matching as related to the risk of graft-versus-host disease[J]. Blood, 2017, 129(6): 791-798.
|
[10] |
Abdelhakim H, Abdel-Azim H, Saad A. Role of αβ T cell depletion in prevention of graft versus host disease[J]. Biomedicines, 2017, 5(3): 35.
|
[11] |
Wang C, Zhao W. Gene editing technique and its application in host cell transformation[J]. Pharm Biotechnol (药物生物技术), 2021, 28(2): 192-199.
|
[12] |
Zhang HX, Zhang Y, Yin H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9[J]. Mol Ther, 2019, 27(4): 735-746.
|
[13] |
MacLeod DT, Antony J, Martin AJ, et al. Integration of a CD19 CAR into the TCR alpha chain locus streamLines production of allogeneic gene-edited CAR T cells[J]. Mol Ther, 2017, 25(4): 949-961.
|
[14] |
Bailey SR, Maus MV. Gene editing for immune cell therapies[J]. Nat Biotechnol, 2019, 37(12): 1425-1434.
|
[15] |
Setten RL, Rossi JJ, Han SP. The Current state and future directions of RNAi-based therapeutics[J]. Nat Rev Drug Discov, 2019, 18(6): 421-446.
|
[16] |
Bogdanove AJ, Bohm A, Miller JC, et al. Engineering altered protein-DNA recognition specificity[J]. Nucleic Acids Res, 2018, 46(10): 4845-4871.
|
[17] |
He XB, Gu F. Genome-editing: focus on the off-target effects[J]. Chin J Biotechnol (生物工程学报), 2017, 33(10): 1757-1775.
|
[18] |
Bao XR, Pan YD, Lee CM, et al. Tools for experimental and computational analyses of off-target editing by programmable nucleases[J]. Nat Protoc, 2021, 16(1): 10-26.
|
[19] |
Gilham DE, Michaux A, Breman E, et al. TCR inhibitory molecule as a promising allogeneic NKG2D CAR-t cell approach[J]. J Clin Oncol, 2018, 36(15_suppl): e15042.
|
[20] |
Bajwa G, Arber C. Rapid generation of TCR and CD8αβ transgenic virus specific T cells for immunotherapy of leukemia[J]. Front Immunol, 2022, 13: 830021.
|
[21] |
O''Reilly RJ, Prockop S, Hasan AS, et al. Therapeutic advantages provided by banked virus-specific T-cells of defined HLA-restriction[J]. Bone Marrow Transplant, 2019, 54(Suppl 2): 759-764.
|
[22] |
Perez C, Gruber I, Arber C. Off-the-shelf allogeneic T cell therapies for cancer: opportunities and challenges using naturally occurring universal donor T cells[J]. Front Immunol, 2020, 11: 583716.
|
[23] |
Yazdanifar M, Barbarito G, Bertaina A, et al. γδ T cells: the ideal tool for cancer immunotherapy[J]. Cells, 2020, 9(5): 1305.
|
[24] |
Morandi F, Yazdanifar M, Cocco C, et al. Engineering the bridge between innate and adaptive immunity for cancer immunotherapy: focus on γδ T and NK cells[J]. Cells, 2020, 9(8): 1757.
|
[25] |
Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers[J]. Nat Med, 2015, 21(8): 938-945.
|
[26] |
Terabe M, Berzofsky JA. Tissue-specific roles of NKT cells in tumor immunity[J]. Front Immunol, 2018, 9: 1838.
|
[27] |
Fujii SI, Shimizu K. Immune networks and therapeutic targeting of iNKT cells in cancer[J]. Trends Immunol, 2019, 40(11): 984-997.
|
[28] |
Heczey A, Courtney AN, Montalbano A, et al. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis[J]. Nat Med, 2020, 26(11): 1686-1690.
|
[29] |
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 439-448.
|
[30] |
Benjamin R, Graham C, Yallop D, et al. Preliminary data on safety, cellular kinetics and anti-leukemic activity of UCART19, an allogeneic anti-CD19 CAR T-cell product, in a pool of adult and pediatric patients with high-risk CD19+ relapsed/refractory B-cell acute lymphoblastic leukemia[J]. Blood, 2018, 132: 896.
|
[31] |
Hill JA, Li D, Hay KA, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy[J]. Blood, 2018, 131(1): 121-130.
|
[32] |
Mo FY, Watanabe N, McKenna MK, et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection[J]. Nat Biotechnol, 2021, 39(1): 56-63.
|
[33] |
Salas-Mckee J, Kong WM, Gladney WL, et al. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy[J]. Hum Vaccines Immunother, 2019, 15(5): 1126-1132.
|
[34] |
Gornalusse GG, Hirata RK, Funk SE, et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells[J]. Nat Biotechnol, 2017, 35(8): 765-772.
|
[35] |
Chang LY, Liang SY, Lu SC, et al. Molecular basis and role of siglec-7 ligand expression on chronic lymphocytic leukemia B cells[J]. Front Immunol, 2022, 13: 840388.
|
[36] |
Nezhad MS, Abdollahpour-Alitappeh M, Rezaei B, et al. Induced pluripotent stem cells (iPSCs) provide a potentially unlimited T cell source for CAR-T cell development and off-the-shelf products[J]. Pharm Res, 2021, 38(6): 931-945.
|
[37] |
Iriguchi S, Yasui Y, Kawai Y, et al. A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy[J]. Nat Commun, 2021, 12(1): 430.
|
[38] |
Chang C, Van Der Stegen S, Mili M, et al. FT819: translation of off-the-shelf TCR-less trac-1XX CAR-T cells in support of first-of-kind phase I clinical trial[J]. Blood, 2019, 134(Supplement_1): 4434.
|
[39] |
Arcangeli S, Falcone L, Camisa B, et al. Next-generation manufacturing protocols enriching TSCM CAR T cells can overcome disease-specific T cell defects in cancer patients[J]. Front Immunol, 2020, 11: 1217.
|
[40] |
Stock S, Schmitt M, Sellner L. Optimizing manufacturing protocols of chimeric antigen receptor T cells for improved anticancer immunotherapy[J]. Int J Mol Sci, 2019, 20(24): 6223.
|
[41] |
Eyquem J, Mansilla-Soto J, Giavridis T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643): 113-117.
|
[42] |
Mailankody S, Matous JV, Liedtke M, et al. Universal: an allogeneic first-in-human study of the anti-bcma ALLO-715 and the anti-CD52 ALLO-647 in relapsed/refractory multiple myeloma[J]. Blood, 2020, 136(Supplement 1): 24-25.
|
[43] |
Prenen H, Dekervel J, Hendlisz A, et al. Updated data from alloSHRINK phase I first-in-human study evaluating CYAD-101, an innovative non-gene edited allogeneic CAR-T in mCRC[J]. J Clin Oncol, 2021, 39(3_suppl): 74.
|
[44] |
Shah BD, Jacobson CA, Solomon S, et al. Preliminary safety and efficacy of PBCAR0191, an allogeneic, off-the-shelf CD19-targeting CAR-T product, in relapsed/refractory (r/r) CD19+ NHL[J]. J Clin Oncol, 2021, 39(15_suppl): 7516.
|
[45] |
CRISPR Therapeutics.CRISPR Therapeutics reports positive results from its phase 1 CARBON trial of CTX110? in relapsed or refractory CD19+ B-cell malignancies[EB/OL].(2021-10-12)[2021-11-25].http://www.crisprtx.com/about-us/press-releases-and-presentations/crispr-therapeutics-reports-positive-results-from-its-phase-1-carbon-trial-of-ctx110-in-relapsed-or-refractory-cd19-b-cell-malignancies.
|
[46] |
BioAdicet.Adicet Bio announces positive interim clinical data from first-ever allogeneic,off-the-shelf,gamma delta CAR T investigational cell therapy[EB/OL].(2021-12-06)[2022-01-20].https://investor.adicetbio.com/news-releases/news-release-details/adicet-bio-announces-positive-interim-clinical-data-first-ever.
|
[47] |
Athenex. Athenex presents interim data from phase 1 ANCHOR study of KUR-502 (allogeneic CD19 CAR-NKT cells) in relapsed or refractory lymphoma and leukemia at the 2022 transplantation & cellular ("Tandem") meetings of ASTCT and CIBMTR[EB/OL]. (2022-04-25)[2022-05-18]. https: //ir.athenex.com/news-releases/news-release-details/athenex-presents-interim-data-phase-1-anchor-study-kur-502.
|
[48] |
Wang XX, Li SQ, Gao L, et al. Safety and efficacy results of GC027: the first-in-human, universal CAR-T cell therapy for adult relapsed/refractory T-cell acute lymphoblastic leukemia (r/r T-ALL)[J]. J Clin Oncol, 2020, 38(15_suppl): 3013.
|
[49] |
Hu YX, Zhou YL, Zhang MM, et al. CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia[J]. Clin Cancer Res, 2021, 27(10): 2764-2772.
|