• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

双重吸附结合HPLC-MS/MS法测定生物基质中内源性组胺及组氨酸

黄浩然, 沈佳佳, 胡康睿, 李昌键, 谢林, 王广基, 梁艳

黄浩然, 沈佳佳, 胡康睿, 李昌键, 谢林, 王广基, 梁艳. 双重吸附结合HPLC-MS/MS法测定生物基质中内源性组胺及组氨酸[J]. 中国药科大学学报, 2022, 53(1): 86-92. DOI: 10.11665/j.issn.1000-5048.20220113
引用本文: 黄浩然, 沈佳佳, 胡康睿, 李昌键, 谢林, 王广基, 梁艳. 双重吸附结合HPLC-MS/MS法测定生物基质中内源性组胺及组氨酸[J]. 中国药科大学学报, 2022, 53(1): 86-92. DOI: 10.11665/j.issn.1000-5048.20220113
HUANG Haoran, SHEN Jiajia, HU Kangrui, LI Changjian, XIE Lin, WANG Guangji, LIANG Yan. Quantitative determination of endogenous histamine and histidine in biological matrices by double adsorption based on HPLC-MS/MS[J]. Journal of China Pharmaceutical University, 2022, 53(1): 86-92. DOI: 10.11665/j.issn.1000-5048.20220113
Citation: HUANG Haoran, SHEN Jiajia, HU Kangrui, LI Changjian, XIE Lin, WANG Guangji, LIANG Yan. Quantitative determination of endogenous histamine and histidine in biological matrices by double adsorption based on HPLC-MS/MS[J]. Journal of China Pharmaceutical University, 2022, 53(1): 86-92. DOI: 10.11665/j.issn.1000-5048.20220113

双重吸附结合HPLC-MS/MS法测定生物基质中内源性组胺及组氨酸

基金项目: 江苏省自然科学基金资助项目(No.BK20211224)

Quantitative determination of endogenous histamine and histidine in biological matrices by double adsorption based on HPLC-MS/MS

Funds: This study was supported by the Natural Science Foundation of Jiangsu Province (No.BK20211224)
  • 摘要: 首次采用双重吸附结合高效液相色谱-串联质谱(HPLC-MS/MS)建立了同时定量分析生物基质中组胺及其前体组氨酸的方法。内标为2,5-二羟基苯甲酸(DHB),血浆和脑组织匀浆液经3倍乙腈沉淀蛋白后,取上清液进样分析;并采用氨基色谱柱(ODS-SPXBridge? Amide)对目标成分进行分离分析,以0.1%甲酸和1 mmol/L甲酸铵水和乙腈进行梯度洗脱;质谱检测采用ESI离子源在多反应监测(MRM)模式下定量分析。为了提高检测的专属性和准确度,首次对生物基质采用活性炭和方解石进行双重吸附;并以吸附后的基质进行方法学考察,结果显示,组胺及组氨酸在定量范围内线性良好(相关系数r≥0.999),准确度、精密度、提取回收率、基质效应和稳定性均满足生物样本分析要求,该方法不仅可用于生物样品中组胺和组氨酸的同时定量分析,还为其他内源性物质提供了共性的检测技术。
    Abstract: An innovative approach to quantitatively analyze the histamine and its precursor histidine simultaneously in biological matrices was established for the first time based on double adsorption combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).The internal standard was 2-dihydroxybenzoic acid (DHB).The plasma and brain tissue homogenate was protein precipitated with 3-fold acetonitrile, and the supernatant was then sampled for injection analysis.The chromatographic separation of the target components was achieved on an amino chromatography column (ODS-SPXBridge? Amide).Gradient elution was carried out with the mobile phase consisting of solvent A (0.1% formic acid and 1mmol/L ammonium formate in water) and solvent B (acetonitrile).Mass spectrometry was employed for quantitative analysis with ESI ion source in multiple reaction monitoring (MRM) mode.In order to improve the specificity and accuracy, activated carbon and calcite were used for the double adsorption of biological matrices for the first time.The adsorbed matrix was then used for methodology validation.The results showed that histamine and histidine were linear in the quantitative range (correlation coefficient r ≥ 0.999).Accuracy, precision, extraction recovery, matrix effect and stability all met the requirements of biological sample analysis.All results suggested that the present method could not only be efficiently and reliably used for simultaneous quantitative analysis of histamine and histidine in biological samples, but also provide reference for the detection of other endogenous substances.
  • [1] . Nat Rev Neurosci,2003,4(2):121-130.
    [2] Koski SK,Leino S,Panula P,et al. Genetic lack of histamine upregulates dopamine neurotransmission and alters rotational behavior but not levodopa-induced dyskinesia in a mouse model of Parkinson''s disease[J]. Neurosci Lett,2020,729:134932.
    [3] Bajda M,?a?ewska D,Godyń J,et al. Search for new multi-target compounds against Alzheimer''s disease among histamine H3 receptor ligands[J]. Eur J Med Chem,2020,185:111785.
    [4] Nomura H. Histamine signaling restores retrieval of forgotten memories[J]. Folia Pharmacol Jpn,2021,156(5):292-296.
    [5] Cacabelos R,Torrellas C,Fernández-Novoa L,et al. Histamine and immune biomarkers in CNS disorders[J]. Mediators Inflamm,2016,2016:1924603.
    [6] Adachi N,Liu K,Arai T. Prevention of brain infarction by postischemic administration of histidine in rats[J]. Brain Res,2005,1039(1/2):220-223.
    [7] Liao RJ,Jiang L,Wang RR,et al. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration[J]. Sci Rep,2015,5:15356.
    [8] Chevrier D,Guesdon JL,Mazié JC,et al. Enzyme immunoassay for the measurement of histamine[J]. J Immunol Methods,1986,94(1/2):119-125.
    [9] McBride P,Bradley D,Kaliner M. Evaluation of a radioimmunoassay for histamine measurement in biologic fluids[J]. J Allergy Clin Immunol,1988,82(4):638-646.
    [10] Munir MA,Mackeen MMM,Heng LY,et al. Study of histamine detection using liquid chromatography and gas chromatography[J]. ASM Sc J,2021,16:1-9.
    [11] Han XQ,Vohra MM. A sensitive method for simultaneous determination of histamine and noradrenaline with high-performance liquid chromatography/electrochemistry[J]. J Pharmacol Methods,1991,25(1):29-40.
    [12] Murakami Y,Nakai N,Ando N,et al. Determination of histamine by a rapid fluorescamine-UPLC method[J]. Shokuhin Eiseigaku Zasshi,2018,59(3):121-125.
    [13] Rox K,Rath S,Pieper DH,et al. A simplified LC-MS/MS method for the quantification of the cardiovascular disease biomarker trimethylamine-N-oxide and its precursors[J]. J Pharm Anal,2021,11(4):523-528.
    [14] Ceyhan AA,?ahin ?,Baytar O,et al. Surface and porous characterization of activated carbon prepared from pyrolysis of biomass by two-stage procedure at low activation temperature and it''s the adsorption of iodine[J]. J Anal Appl Pyrolysis,2013,104:378-383.
    [15] Marzec B,Green DC,Holden MA,et al. Amino acid assisted incorporation of dye molecules within calcite crystals[J]. Angewandte Chemie Int Ed,2018,57(28):8623-8628.
    [16] Carvalho Poyraz F,Holzner E,Bailey MR,et al. Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action[J]. J Neurosci,2016,36(22):5988-6001.
  • 期刊类型引用(8)

    1. 吴菊华,李俊锋,陶雷. 基于知识图谱嵌入与深度学习的药物不良反应预测. 广东工业大学学报. 2024(01): 19-26+40 . 百度学术
    2. 任韡,黄彦,朱枫,喻锦扬,王青. 智能化药品不良反应报告辅助评价工具研究. 中国食品药品监管. 2024(09): 122-129 . 百度学术
    3. 荣丹琪,王倩,唐丽,司婉雨,赵鸿萍. 基于特征的深度学习预测化合物-蛋白质相互作用的研究进展. 中国药科大学学报. 2023(03): 305-313 . 本站查看
    4. 由丽萍,王世钰,李朝翻. 基于框架语义分析的社交网络药品不良事件抽取. 医学信息学杂志. 2023(07): 57-62 . 百度学术
    5. 卢恒,陈章杰,周知. 基于知识图谱的虚拟学术社区用户生成内容知识共聚框架研究. 情报理论与实践. 2023(12): 157-166+192 . 百度学术
    6. 仲雨乐,马诗雯,陆豪杰,韩普. 基于机器学习的药品不良反应实体识别研究综述. 软件工程. 2022(08): 1-6 . 百度学术
    7. 陈伟,吴云志,涂凌,刘航,余克健,乐毅. 基于多头自注意力机制的实体识别研究. 蚌埠学院学报. 2022(05): 54-60 . 百度学术
    8. 潘文洁,尹泽宇,侯婉馨,Jawad Hussain,张远鹏,姚敏,王理. 基于医学科研与临床应用的药物知识库研究进展. 中华临床医师杂志(电子版). 2021(01): 72-78 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  193
  • HTML全文浏览量:  4
  • PDF下载量:  444
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2021-12-29
  • 刊出日期:  2022-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭