• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

血管化器官芯片在模拟生理和病理过程中的应用

刘宏婷, 吉晓轩, 李菁, 孙敏捷

刘宏婷, 吉晓轩, 李菁, 孙敏捷. 血管化器官芯片在模拟生理和病理过程中的应用[J]. 中国药科大学学报, 2022, 53(3): 264-272. DOI: 10.11665/j.issn.1000-5048.20220302
引用本文: 刘宏婷, 吉晓轩, 李菁, 孙敏捷. 血管化器官芯片在模拟生理和病理过程中的应用[J]. 中国药科大学学报, 2022, 53(3): 264-272. DOI: 10.11665/j.issn.1000-5048.20220302
LIU Hongting, JI Xiaoxuan, LI Jing, SUN Minjie. Application of vascularized organ-on-a-chip in simulating physiological and pathological processes[J]. Journal of China Pharmaceutical University, 2022, 53(3): 264-272. DOI: 10.11665/j.issn.1000-5048.20220302
Citation: LIU Hongting, JI Xiaoxuan, LI Jing, SUN Minjie. Application of vascularized organ-on-a-chip in simulating physiological and pathological processes[J]. Journal of China Pharmaceutical University, 2022, 53(3): 264-272. DOI: 10.11665/j.issn.1000-5048.20220302

血管化器官芯片在模拟生理和病理过程中的应用

Application of vascularized organ-on-a-chip in simulating physiological and pathological processes

  • 摘要: 随着仿生化技术的发展,越来越多的体外模型被应用于模拟人体生理和病理过程。这些体外模型可以解决一些科学问题,例如,实时地、可视化地研究药物作用等。器官芯片作为一种体外模型,为基础科学和应用科学提供了新型的手段和方法。而血管化器官芯片作为一种特殊的器官芯片,能更好地模拟人体血管的结构和功能。本文概括了不同血管化器官芯片的结构和功能,分析了血管化器官芯片在模拟生理和病理过程中的应用,讨论了血管化器官芯片作为一种新型体外模型的优势与待解决的问题。最后,对血管化器官芯片的应用前景提出了设想与展望。
    Abstract: With the development of biomimetic technology, more and more in vitro models are used to simulate human physiological and pathological processes.These in vitro models can solve some scientific problems, such as studying drug effects in real-timely and visually.As an in vitro model, organ-on-a-chip provides novel means and methods for basic and applied science.The vascularized organ-on-a-chip, as a special kind of organ-on-a-chip, can better simulate the structure and function of human blood vessels.In this review, we summarized the structure and function of different vascularized organ-on-a-chip, analyzed the application of vascularized organ-on-a-chip in simulating physiological and pathological processes, and discussed the advantages and problems to be solved of vascularized organ-on-a-chip as a new in vitro model.Finally, the application of vascularized organ-on-a-chip is proposed.
  • [1] . Annu Rev Biomed Eng,2011,13:55-72.
    [2] Majesky MW. Vascular development[J]. Arterioscler Thromb Vasc Biol,2018,38(3):e17-e24.
    [3] Poole DC,Behnke BJ,Musch TI. The role of vascular function on exercise capacity in health and disease[J]. J Physiol,2021,599(3):889-910.
    [4] Alves CH,Fernandes R,Santiago AR,et al. Microglia contribution to the regulation of the retinal and choroidal vasculature in age-related macular degeneration[J]. Cells,2020,9(5):1217.
    [5] Souilhol C,Harmsen MC,Evans PC,et al. Endothelial-mesenchymal transition in atherosclerosis[J]. Cardiovasc Res,2018,114(4):565-577.
    [6] Filipowska J,Tomaszewski KA,Nied?wiedzki ?,et al. The role of vasculature in bone development,regeneration and proper systemic functioning[J]. Angiogenesis,2017,20(3):291-302.
    [7] Shemmeri E,Vallières E. Blunt tracheobronchial trauma[J]. Thorac Surg Clin,2018,28(3):429-434.
    [8] Li XR,Sun XD,Carmeliet P. Hallmarks of endothelial cell metabolism in health and disease[J]. Cell Metab,2019,30(3):414-433.
    [9] Bhatia SN,Ingber DE. Microfluidic organs-on-chips[J]. Nat Biotechnol,2014,32(8):760-772.
    [10] Sontheimer-Phelps A,Hassell BA,Ingber DE. Modelling cancer in microfluidic human organs-on-chips[J]. Nat Rev Cancer,2019,19(2):65-81.
    [11] Kieninger J,Weltin A,Flamm H,et al. Microsensor systems for cell metabolism - from 2D culture to organ-on-chip[J]. Lab Chip,2018,18(9):1274-1291.
    [12] G?gotek A,Atalay S,Domingues P,et al. The differences in the proteome profile of cannabidiol-treated skin fibroblasts following UVA or UVB irradiation in 2D and 3D cell cultures[J]. Cells,2019,8(9):995.
    [13] Nugraha B,Buono MF,von Boehmer L,et al. Human cardiac organoids for disease modeling[J]. Clin Pharmacol Ther,2019,105(1):79-85.
    [14] van Zundert I,Fortuni B,Rocha S. From 2D to 3D cancer cell models-the enigmas of drug delivery research[J]. Nanomaterials (Basel),2020,10(11):2236.
    [15] Drost J,Clevers H. Organoids in cancer research[J]. Nat Rev Cancer,2018,18(7):407-418.
    [16] Zanoni M,Cortesi M,Zamagni A,et al. Modeling neoplastic disease with spheroids and organoids[J]. J Hematol Oncol,2020,13(1):97.
    [17] Robinson NB,Krieger K,Khan FM,et al. The Current state of animal models in research:a review[J]. Int J Surg,2019,72:9-13.
    [18] Potente M,Carmeliet P. The link between angiogenesis and endothelial metabolism[J]. Annu Rev Physiol,2017,79:43-66.
    [19] Brassard-Jollive N,Monnot C,Muller L,et al. In vitro 3D systems to model tumor angiogenesis and interactions with stromal cells[J]. Front Cell Dev Biol,2020,8:594903.
    [20] Naito H,Iba T,Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells[J]. Int Immunol,2020,32(5):295-305.
    [21] Azevedo Portilho N,Pelajo-Machado M. Mechanism of hematopoiesis and vasculogenesis in mouse placenta[J]. Placenta,2018,69:140-145.
    [22] Glembotski CC,Rosarda JD,Wiseman RL. Proteostasis and beyond:ATF6 in ischemic disease[J]. Trends Mol Med,2019,25(6):538-550.
    [23] Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis[J]. Curr Opin Cell Biol,2018,55:30-35.
    [24] Veith AP,Henderson K,Spencer A,et al. Therapeutic strategies for enhancing angiogenesis in wound healing[J]. Adv Drug Deliv Rev,2019,146:97-125.
    [25] Hamidi H,Ivaska J. Every step of the way:integrins in cancer progression and metastasis[J]. Nat Rev Cancer,2018,18(9):533-548.
    [26] Faubert B,Solmonson A,DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science,2020,368(6487):eaaw5473.
    [27] Huh D,Matthews BD,Mammoto A,et al. Reconstituting organ-level lung functions on a chip[J]. Science,2010,328(5986):1662-1668.
    [28] Zhu YJ,Sun LY,Wang Y,et al. A biomimetic human lung-on-a-chip with colorful display of microphysiological breath[J]. Adv Mater,2022,34(13):e2108972.
    [29] Huang D,Liu TT,Liao JL,et al. Reversed-engineered human alveolar lung-on-a-chip model[J]. Proc Natl Acad Sci U S A,2021,118(19):e2016146118.
    [30] Novak R,Ingram M,Marquez S,et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips[J]. Nat Biomed Eng,2020,4(4):407-420.
    [31] Huang DQ,Zhang XX,Fu X,et al. Liver spheroids on chips as emerging platforms for drug screening[J]. Eng Regen,2021,2:246-256.
    [32] Young RE,Huh DD. Organ-on-a-chip technology for the study of the female reproductive system[J]. Adv Drug Deliv Rev,2021,173:461-478.
    [33] Herland A,Maoz BM,Das D,et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips[J]. Nat Biomed Eng,2020,4(4):421-436.
    [34] Kim S,Lee H,Chung M,et al. Engineering of functional,perfusable 3D microvascular networks on a chip[J]. Lab Chip,2013,13(8):1489-1500.
    [35] Lee S,Kim S,Koo DJ,et al. 3D microfluidic platform and tumor vascular mapping for evaluating anti-angiogenic RNAi-based nanomedicine[J]. ACS Nano,2021,15(1):338-350.
    [36] Lee S,Chung M,Lee SR,et al. 3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro[J]. Biotechnol Bioeng,2020,117(3):748-762.
    [37] Park YC,Zhang CT,Kim S,et al. Microvessels-on-a-chip to assess targeted ultrasound-assisted drug delivery[J]. ACS Appl Mater Interfaces,2016,8(46):31541-31549.
    [38] Chung M,Ahn J,Son K,et al. Biomimetic model of tumor microenvironment on microfluidic platform[J]. Adv Healthc Mater,2017,6(15). doi:10.1002/adhm.201700196.
    [39] Oh S,Ryu H,Tahk D,et al. “Open-top” microfluidic device for in vitro three-dimensional capillary beds[J]. Lab Chip,2017,17(20):3405-3414.
    [40] Ahn J,Cho CS,Cho SW,et al. Investigation on vascular cytotoxicity and extravascular transport of cationic polymer nanoparticles using perfusable 3D microvessel model[J]. Acta Biomater,2018,76:154-163.
    [41] Wang XL,Phan DTT,Sobrino A,et al. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels[J]. Lab Chip,2016,16(2):282-290.
    [42] Sobrino A,Phan DTT,Datta R,et al. 3D microtumors in vitro supported by perfused vascular networks[J]. Sci Rep,2016,6:31589.
    [43] van Duinen V,Zhu D,Ramakers C,et al. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform[J]. Angiogenesis,2019,22(1):157-165.
    [44] van Duinen V,Stam W,Borgdorff V,et al. Standardized and scalable assay to study perfused 3D angiogenic sprouting of iPSC-derived endothelial cells in vitro[J]. J Vis Exp,2019(153). doi:10.3791/59678.
    [45] van Duinen V,van den Heuvel A,Trietsch SJ,et al. 96 perfusable blood vessels to study vascular permeability in vitro[J]. Sci Rep,2017,7(1):18071.
    [46] Poussin C,Kramer B,Lanz HL,et al. 3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow - application in systems toxicology[J]. ALTEX,2020,37(1):47-63.
    [47] Zhu LY,Shao CM,Chen HX,et al. Hierarchical hydrogels with ordered micro-nano structures for cancer-on-a-chip construction[J]. Research (Wash D C),2021,2021:9845679.
    [48] Wang HF,Ran R,Liu Y,et al. Tumor-vasculature-on-a-chip for investigating nanoparticle extravasation and tumor accumulation[J]. ACS Nano,2018,12(11):11600-11609.
    [49] Paek J,Park SE,Lu QZ,et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues[J]. ACS Nano,2019,13(7):7627-7643.
    [50] Nashimoto Y,Okada R,Hanada S,et al. Vascularized cancer on a chip:the effect of perfusion on growth and drug delivery of tumor spheroid[J]. Biomaterials,2020,229:119547.
    [51] Nashimoto Y,Hayashi T,Kunita I,et al. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device[J]. Integr Biol (Camb),2017,9(6):506-518.
    [52] Nashimoto Y,Teraoka Y,Banan Sadeghian R,et al. Perfusable vascular network with a tissue model in a microfluidic device[J]. J Vis Exp,2018(134):57242.
    [53] Carvalho MR,Barata D,Teixeira LM,et al. Colorectal tumor-on-a-chip system:a 3D tool for precision onco-nanomedicine[J]. Sci Adv,2019,5(5):eaaw1317.
    [54] Zhang BY,Radisic M. Organ-on-a-chip devices advance to market[J]. Lab Chip,2017,17(14):2395-2420.
  • 期刊类型引用(8)

    1. 刘健弘,张欣橦,李颖娴,杨展,符艺,周瑜芳. 药物缓释体系的研究进展. 广东化工. 2024(15): 90-92+45 . 百度学术
    2. 郑丽君,刘玲,张向荣. 脂质体在乳品中的应用. 中国药剂学杂志(网络版). 2023(01): 34-48 . 百度学术
    3. 郭文娣,彭玉帅,许卉,陈华. 脂质体制剂制备工艺及质量控制研究进展. 药物分析杂志. 2023(01): 61-69 . 百度学术
    4. 柳宇红,姜宇,郝贵周,刘善奎. 挤出法制备卡巴他赛脂质体的工艺优化. 药学研究. 2023(04): 243-246+284 . 百度学术
    5. 吴灿,关延彬,贾永艳. 药剂学课程思政探索——以“脂质体”为例. 中国教育技术装备. 2023(18): 72-74 . 百度学术
    6. 毛欣亮,邓惠林,张浩,李吉平,蔡德富,樊丽,孙珈,岳丽玲,潘思文,温宪春. 共载紫草素和盐酸阿霉素pH敏感脂质体的制备及理化性质评价. 齐齐哈尔医学院学报. 2023(23): 2201-2207 . 百度学术
    7. 蔡成龙,闫雪生,于蓓蓓,孙丹丹. 透明质酸修饰茯苓皮总三萜脂质体制备与表征研究. 辽宁中医药大学学报. 2022(05): 50-55 . 百度学术
    8. 张艺,杭太俊,宋敏. 载药脂质体包封率测定方法的研究进展. 中国药科大学学报. 2021(02): 245-252 . 本站查看

    其他类型引用(12)

计量
  • 文章访问数:  553
  • HTML全文浏览量:  2
  • PDF下载量:  537
  • 被引次数: 20
出版历程
  • 收稿日期:  2021-11-21
  • 修回日期:  2022-04-21
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭