• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

自组装多肽骨修复水凝胶的研究进展

徐柳, 徐姗, 相堂永, 沙政舟, 张键, 陈志鹏

徐柳, 徐姗, 相堂永, 沙政舟, 张键, 陈志鹏. 自组装多肽骨修复水凝胶的研究进展[J]. 中国药科大学学报, 2022, 53(3): 356-364. DOI: 10.11665/j.issn.1000-5048.20220314
引用本文: 徐柳, 徐姗, 相堂永, 沙政舟, 张键, 陈志鹏. 自组装多肽骨修复水凝胶的研究进展[J]. 中国药科大学学报, 2022, 53(3): 356-364. DOI: 10.11665/j.issn.1000-5048.20220314
XU Liu, XU Shan, XIANG Tangyong, SHA Zhengzhou, ZHANG Jian, CHEN Zhipeng. Advances in self-assembled peptide hydrogels for bone regeneration[J]. Journal of China Pharmaceutical University, 2022, 53(3): 356-364. DOI: 10.11665/j.issn.1000-5048.20220314
Citation: XU Liu, XU Shan, XIANG Tangyong, SHA Zhengzhou, ZHANG Jian, CHEN Zhipeng. Advances in self-assembled peptide hydrogels for bone regeneration[J]. Journal of China Pharmaceutical University, 2022, 53(3): 356-364. DOI: 10.11665/j.issn.1000-5048.20220314

自组装多肽骨修复水凝胶的研究进展

基金项目: 国家自然科学基金资助项目(No.82173992);江苏省研究生科研与实践创新资助项目(No.KYCX_201491)

Advances in self-assembled peptide hydrogels for bone regeneration

Funds: This study was supported by the National Natural Science Foundation of China (No. 82173992) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.KYCX_201491)
  • 摘要: 开发具有成骨诱导的骨填充材料是促进骨再生的重要研究方向。自组装多肽水凝胶凭借其高度的仿生人工细胞外基质结构、低免疫原性、易于合成及修饰、载药灵活等优势为骨组织修复提供了一个高效治疗手段。本文讨论了自组装多肽水凝胶的设计原则,报道了自组装多肽结构特征及组装机制,重点介绍了自组装多肽骨修复水凝胶在递送干细胞、血管内皮细胞、骨形成蛋白、成骨因子以及小分子化合物等方面的最新研究进展,总结了限制自组装多肽水凝胶发展的瓶颈和未来发展方向,为构建高成骨性能凝胶递送系统提供理论参考。
    Abstract: The development of osteoinductive bone-filling biomaterials for bone regeneration is of great significance.Self-assembled peptide hydrogels with high biomimetic extracellular matrix structure, low immunogenicity, easy synthesis and modification, and flexible loading capacity provide a highly efficient therapeutic platform for bone tissue repair.Herein, we discuss the design principles of self-assembled peptide hydrogels, report the structural characteristics and assembly mechanisms of self-assembled peptides, and highlight recent advances in self-assembled peptide hydrogels for bone regeneration, including delivery to cells , bone morphogenetic proteins, active factors and small molecular substances.Finally, the bottleneck and development direction of self-assembled peptide hydrogels are pointed out, aiming to provide guidance for the construction of hydrogel delivery systems with high osteogenic properties.
  • [1] . Biomaterials,2020,235:119821.
    [2] Zhang K,Wang SP,Zhou CC,et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration[J]. Bone Res,2018,6:31.
    [3] Lei PF,Hu RY,Hu YH. Bone defects in revision total knee arthroplasty and management[J]. Orthop Surg,2019,11(1):15-24.
    [4] Artas G,Gul M,Acikan I,et al. A comparison of different bone graft materials in peri-implant guided bone regeneration[J]. Braz Oral Res,2018,32:e59.
    [5] Zhang H,Yang L,Yang XG,et al. Demineralized bone matrix carriers and their clinical applications:an overview[J]. Orthop Surg,2019,11(5):725-737.
    [6] Zheng X,Liu Y,Liu YX,et al. Novel three-dimensional bioglass functionalized gelatin nanofibrous scaffolds for bone regeneration[J]. J Biomed Mater Res B Appl Biomater,2021,109(4):517-526.
    [7] Tan SL,Wang YF,du YY,et al. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation[J]. Bioact Mater,2021,6(10):3411-3423.
    [8] Brink O. The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery[J]. Injury,2021,52(Suppl 2):S23-S28.
    [9] Gaihre B,Liu XF,Li LL,et al. Bifunctional hydrogel for potential vascularized bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl,2021,124:112075.
    [10] Ding X,Zhao HM,Li YZ,et al. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering[J]. Adv Drug Deliv Rev,2020,160:78-104.
    [11] Nallusamy J,Das RK. Hydrogels and their role in bone tissue engineering:an overview[J]. J Pharm Bioallied Sci,2021,13(Suppl 2):S908-S912.
    [12] Ranganathan S,Balagangadharan K,Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering[J]. Int J Biol Macromol,2019,133:354-364.
    [13] Hernández-González AC,Téllez-Jurado L,Rodríguez-Lorenzo LM. Alginate hydrogels for bone tissue engineering,from injectables to bioprinting:a review[J]. Carbohydr Polym,2020,229:115514.
    [14] Zhai PS,Peng XX,Li BQ,et al. The application of hyaluronic acid in bone regeneration[J]. Int J Biol Macromol,2020,151:1224-1239.
    [15] Ma FB,Li SJ,Ruiz-Ortega LI,et al. Effects of alginate/chondroitin sulfate-based hydrogels on bone defects healing[J]. Mater Sci Eng C Mater Biol Appl,2020,116:111217.
    [16] Yang YC,Feng YT,Qu RM,et al. Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering[J]. Stem Cell Res Ther,2020,11(1):522.
    [17] Parivatphun T,Sangkert S,Meesane J,et al. Constructed microbubble porous scaffolds of polyvinyl alcohol for subchondral bone formation for osteoarthritis surgery[J]. Biomed Mater,2020,15(5):055029.
    [18] Fu K,Wu HG,Su ZQ. Self-assembling peptide-based hydrogels:fabrication,properties,and applications[J]. Biotechnol Adv,2021,49:107752.
    [19] Gong CC,Sun SW,Zhang YJ,et al. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications[J]. Nanoscale,2019,11(10):4147-4182.
    [20] Zhang CY,Li X,Qian H,et al. Self-assembled peptide:insights and biomedicine applications[J]. J China Pharm Univ(中国药科大学学报),2015,46(2):250-256.
    [21] Chen J,Zou XN. Self-assemble peptide biomaterials and their biomedical applications[J]. Bioact Mater,2019,4:120-131.
    [22] Ren H,Wu LF,Tan LN,et al. Self-assembly of amino acids toward functional biomaterials[J]. Beilstein J Nanotechnol,2021,12:1140-1150.
    [23] Dong L,Chen H,Liu T,et al. Poly(l-cysteine) peptide amphiphile derivatives containing disulfide bonds:synthesis,self-assembly-induced β-sheet nanostructures,pH/reduction dual response,and drug release[J]. Biomacromolecules,2021,22(12):5374-5381.
    [24] Zhu J,Avakyan N,Kakkis A,et al. Protein assembly by design[J]. Chem Rev,2021,121(22):13701-13796.
    [25] Costantini S,Colonna G,Facchiano AM. Amino acid propensities for secondary structures are influenced by the protein structural class[J]. Biochem Biophys Res Commun,2006,342(2):441-451.
    [26] Zhao CQ,Chen HY,Wang FS,et al. Amphiphilic self-assembly peptides:rational strategies to design and delivery for drugs in biomedical applications[J]. Colloids Surf B Biointerfaces,2021,208:112040.
    [27] Ghosh G,Kartha KK,Fernández G. Tuning the mechanistic pathways of peptide self-assembly by aromatic interactions[J]. Chem Commun (Camb),2021,57(13):1603-1606.
    [28] ?krbi? T,Hoang TX,Maritan A,et al. Local symmetry determines the phases of linear chains:a simple model for the self-assembly of peptides[J]. Soft Matter,2019,15(28):5596-5613.
    [29] Huang CC,Ravindran S,Kang MY,et al. Engineering a self-assembling leucine zipper hydrogel system with function-specific motifs for tissue regeneration[J]. ACS Biomater Sci Eng,2020,6(5):2913-2928.
    [30] Kisiday J,Jin M,Kurz B,et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division:implications for cartilage tissue repair[J]. Proc Natl Acad Sci U S A,2002,99(15):9996-10001.
    [31] Zanotto G,Liebesny P,Barrett M,et al. Trypsin pre-treatment combined with growth factor functionalized self-assembling peptide hydrogel improves cartilage repair in rabbit model[J]. J Orthop Res,2019,37(11):2307-2315.
    [32] Gelain F,Luo ZL,Zhang SG. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel[J]. Chem Rev,2020,120(24):13434-13460.
    [33] Zuo YP,Xiong QC,Li QW,et al. Osteogenic growth peptide (OGP)-loaded amphiphilic peptide (NapFFY) supramolecular hydrogel promotes osteogenesis and bone tissue reconstruction[J]. Int J Biol Macromol,2022,195:558-564.
    [34] Ghosh M,Halperin-Sternfeld M,Grinberg I,et al. Injectable alginate-peptide composite hydrogel as a scaffold for bone tissue regeneration[J]. Nanomaterials (Basel),2019,9(4):E497.
    [35] Alcaide-Ruggiero L,Molina-Hernández V,Granados MM,et al. Main and minor types of collagens in the articular cartilage:the role of collagens in repair tissue evaluation in chondral defects[J]. Int J Mol Sci,2021,22(24):13329.
    [36] Sun M,Luo EY,Adams SM,et al. Collagen XI regulates the acquisition of collagen fibril structure,organization and functional properties in tendon[J]. Matrix Biol,2020,94:77-94.
    [37] Xu YJ,Kirchner M. Collagen mimetic peptides[J]. Bioengineering (Basel),2021,8(1):5.
    [38] Qin JY,Luo TZ,Kiick KL. Self-assembly of stable nanoscale platelets from designed elastin-like peptide-collagen-like peptide bioconjugates[J]. Biomacromolecules,2019,20(4):1514-1521.
    [39] Pires MM,Lee J,Ernenwein D,et al. Controlling the morphology of metal-promoted higher ordered assemblies of collagen peptides with varied core lengths[J]. Langmuir,2012,28(4):1993-1997.
    [40] Pal VK,Jain R,Roy S. Tuning the supramolecular structure and function of collagen mimetic ionic complementary peptides via electrostatic interactions[J]. Langmuir,2020,36(4):1003-1013.
    [41] Sun XX,He MM,Wang L,et al. Luminescent biofunctional collagen mimetic nanofibers[J]. ACS Omega,2019,4(15):16270-16279.
    [42] Brea RJ,Reiriz C,Granja JR. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes[J]. Chem Soc Rev,2010,39(5):1448-1456.
    [43] He B,Yuan X,Jiang DM. Molecular self-assembly guides the fabrication of peptide nanofiber scaffolds for nerve repair[J]. RSC Adv,2014,4(45):23610-23621.
    [44] Li ZQ,Hou TY,Luo F,et al. Bone marrow enriched graft,modified by self-assembly peptide,repairs critically-sized femur defects in goats[J]. Int Orthop,2014,38(11):2391-2398.
    [45] Hu Y,Lin R,Zhang PC,et al. Electrostatic-driven lamination and untwisting of β-sheet assemblies[J]. ACS Nano,2016,10(1):880-888.
    [46] Tsonchev S,Schatz GC,Ratner MA. Electrostatically-directed self-assembly of cylindrical peptide amphiphile nanostructures[J]. J Phys Chem B,2004,108(26):8817-8822.
    [47] Mehta AK,Lu K,Childers WS,et al. Facial symmetry in protein self-assembly[J]. J Am Chem Soc,2008,130(30):9829-9835.
    [48] Behanna HA,Donners JJ,Gordon AC,et al. Coassembly of amphiphiles with opposite peptide polarities into nanofibers[J]. J Am Chem Soc,2005,127(4):1193-1200.
    [49] Rivas M,del Valle LJ,Alemán C,et al. Peptide self-assembly into hydrogels for biomedical applications related to hydroxyapatite[J]. Gels,2019,5(1):E14.
    [50] Cui HG,Webber MJ,Stupp SI. Self-assembly of peptide amphiphiles:from molecules to nanostructures to biomaterials[J]. Biopolymers,2010,94(1):1-18.
    [51] Koss KM,Unsworth LD. Neural tissue engineering:Bioresponsive nanoscaffolds using engineered self-assembling peptides[J]. Acta Biomater,2016,44:2-15.
    [52] de Groot NS,Parella T,Aviles FX,et al. Ile-phe dipeptide self-assembly:clues to amyloid formation[J]. Biophys J,2007,92(5):1732-1741.
    [53] Sahoo JK,Nazareth C,VandenBerg MA,et al. Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure[J]. Biomater Sci,2017,5(8):1526-1530.
    [54] Chen CH,Hsu EL,Stupp SI. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration[J]. Bone,2020,141:115565.
    [55] Sargeant TD,Aparicio C,Goldberger JE,et al. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells[J]. Acta Biomater,2012,8(7):2456-2465.
    [56] Castelletto V,Edwards-Gayle CJC,Greco F,et al. Self-assembly,tunable hydrogel properties,and selective anti-cancer activity of a carnosine-derived lipidated peptide[J]. ACS Appl Mater Interfaces,2019,11(37):33573-33580.
    [57] Moradi F,Bahktiari M,Joghataei MT,et al. BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration[J]. J Neurosci Res,2012,90(12):2335-2348.
    [58] He B,Ou YS,Zhou A,et al. Functionalized d-form self-assembling peptide hydrogels for bone regeneration[J]. Drug Des Devel Ther,2016,10:1379-1388.
    [59] Kisiday JD,Colbath AC,Tangtrongsup S. Effect of culture duration on chondrogenic preconditioning of equine bone marrow mesenchymal stem cells in self-assembling peptide hydrogel[J]. J Orthop Res,2019,37(6):1368-1375.
    [60] Lv X,Sun CX,Hu BW,et al. Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration[J]. Front Cell Dev Biol,2020,8:864.
    [61] Vitale M,Ligorio C,McAvan B,et al. Hydroxyapatite-decorated Fmoc-hydrogel as a bone-mimicking substrate for osteoclast differentiation and culture[J]. Acta Biomater,2022,138:144-154.
    [62] Maia FR,Musson DS,Naot D,et al. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering[J]. Biomed Mater,2018,13(3):035012.
    [63] Zehnder T,Boccaccini AR,Detsch R. Biofabrication of a co-culture system in an osteoid-like hydrogel matrix[J]. Biofabrication,2017,9(2):025016.
    [64] Hulley PA,Papadimitriou-Olivgeri I,Knowles HJ. Osteoblast-osteoclast coculture amplifies inhibitory effects of FG-4592 on human osteoclastogenesis and reduces bone resorption[J]. JBMR Plus,2020,4(7):e10370.
    [65] Collin-Osdoby P,Osdoby P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells[J]. Methods Mol Biol,2012,816:187-202.
    [66] Aderibigbe B,Aderibigbe I,Popoola P. Design and biological evaluation of delivery systems containing bisphosphonates[J]. Pharmaceutics,2016,9(1):E2.
    [67] Vantucci CE,Krishan L,Cheng A,et al. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma[J]. Biomater Sci,2021,9(5):1668-1682.
    [68] Zha Y,Li YW,Lin TY,et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics,2021,11(1):397-409.
    [69] Onak G,G?kmen O,Yaral? ZB,et al. Enhanced osteogenesis of human mesenchymal stem cells by self-assembled peptide hydrogel functionalized with glutamic acid templated peptides[J]. J Tissue Eng Regen Med,2020,14(9):1236-1249.
    [70] Zhang RJ,Liu Y,Qi YQ,et al. Self-assembled peptide hydrogel scaffolds with VEGF and BMP-2 enhanced in vitro angiogenesis and osteogenesis[J]. Oral Dis,2022,28(3):723-733.
    [71] Zhao WK,Li YL,Zhou A,et al. Controlled release of basic fibroblast growth factor from a peptide biomaterial for bone regeneration[J]. R Soc Open Sci,2020,7(4):191830.
    [72] Panek M,Antunovi? M,Pribol?an L,et al. Bone tissue engineering in a perfusion bioreactor using dexamethasone-loaded peptide hydrogel[J]. Materials (Basel),2019,12(6):E919.
  • 期刊类型引用(1)

    1. 程玮璐,张译丹,刘英慧. 骨填充材料的临床应用进展. 中国医疗器械信息. 2023(21): 43-47 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-02-06
  • 修回日期:  2022-05-04
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭