[1] |
. Biomaterials,2020,235:119821.
|
[2] |
Zhang K,Wang SP,Zhou CC,et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration[J]. Bone Res,2018,6:31.
|
[3] |
Lei PF,Hu RY,Hu YH. Bone defects in revision total knee arthroplasty and management[J]. Orthop Surg,2019,11(1):15-24.
|
[4] |
Artas G,Gul M,Acikan I,et al. A comparison of different bone graft materials in peri-implant guided bone regeneration[J]. Braz Oral Res,2018,32:e59.
|
[5] |
Zhang H,Yang L,Yang XG,et al. Demineralized bone matrix carriers and their clinical applications:an overview[J]. Orthop Surg,2019,11(5):725-737.
|
[6] |
Zheng X,Liu Y,Liu YX,et al. Novel three-dimensional bioglass functionalized gelatin nanofibrous scaffolds for bone regeneration[J]. J Biomed Mater Res B Appl Biomater,2021,109(4):517-526.
|
[7] |
Tan SL,Wang YF,du YY,et al. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation[J]. Bioact Mater,2021,6(10):3411-3423.
|
[8] |
Brink O. The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery[J]. Injury,2021,52(Suppl 2):S23-S28.
|
[9] |
Gaihre B,Liu XF,Li LL,et al. Bifunctional hydrogel for potential vascularized bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl,2021,124:112075.
|
[10] |
Ding X,Zhao HM,Li YZ,et al. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering[J]. Adv Drug Deliv Rev,2020,160:78-104.
|
[11] |
Nallusamy J,Das RK. Hydrogels and their role in bone tissue engineering:an overview[J]. J Pharm Bioallied Sci,2021,13(Suppl 2):S908-S912.
|
[12] |
Ranganathan S,Balagangadharan K,Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering[J]. Int J Biol Macromol,2019,133:354-364.
|
[13] |
Hernández-González AC,Téllez-Jurado L,Rodríguez-Lorenzo LM. Alginate hydrogels for bone tissue engineering,from injectables to bioprinting:a review[J]. Carbohydr Polym,2020,229:115514.
|
[14] |
Zhai PS,Peng XX,Li BQ,et al. The application of hyaluronic acid in bone regeneration[J]. Int J Biol Macromol,2020,151:1224-1239.
|
[15] |
Ma FB,Li SJ,Ruiz-Ortega LI,et al. Effects of alginate/chondroitin sulfate-based hydrogels on bone defects healing[J]. Mater Sci Eng C Mater Biol Appl,2020,116:111217.
|
[16] |
Yang YC,Feng YT,Qu RM,et al. Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering[J]. Stem Cell Res Ther,2020,11(1):522.
|
[17] |
Parivatphun T,Sangkert S,Meesane J,et al. Constructed microbubble porous scaffolds of polyvinyl alcohol for subchondral bone formation for osteoarthritis surgery[J]. Biomed Mater,2020,15(5):055029.
|
[18] |
Fu K,Wu HG,Su ZQ. Self-assembling peptide-based hydrogels:fabrication,properties,and applications[J]. Biotechnol Adv,2021,49:107752.
|
[19] |
Gong CC,Sun SW,Zhang YJ,et al. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications[J]. Nanoscale,2019,11(10):4147-4182.
|
[20] |
Zhang CY,Li X,Qian H,et al. Self-assembled peptide:insights and biomedicine applications[J]. J China Pharm Univ(中国药科大学学报),2015,46(2):250-256.
|
[21] |
Chen J,Zou XN. Self-assemble peptide biomaterials and their biomedical applications[J]. Bioact Mater,2019,4:120-131.
|
[22] |
Ren H,Wu LF,Tan LN,et al. Self-assembly of amino acids toward functional biomaterials[J]. Beilstein J Nanotechnol,2021,12:1140-1150.
|
[23] |
Dong L,Chen H,Liu T,et al. Poly(l-cysteine) peptide amphiphile derivatives containing disulfide bonds:synthesis,self-assembly-induced β-sheet nanostructures,pH/reduction dual response,and drug release[J]. Biomacromolecules,2021,22(12):5374-5381.
|
[24] |
Zhu J,Avakyan N,Kakkis A,et al. Protein assembly by design[J]. Chem Rev,2021,121(22):13701-13796.
|
[25] |
Costantini S,Colonna G,Facchiano AM. Amino acid propensities for secondary structures are influenced by the protein structural class[J]. Biochem Biophys Res Commun,2006,342(2):441-451.
|
[26] |
Zhao CQ,Chen HY,Wang FS,et al. Amphiphilic self-assembly peptides:rational strategies to design and delivery for drugs in biomedical applications[J]. Colloids Surf B Biointerfaces,2021,208:112040.
|
[27] |
Ghosh G,Kartha KK,Fernández G. Tuning the mechanistic pathways of peptide self-assembly by aromatic interactions[J]. Chem Commun (Camb),2021,57(13):1603-1606.
|
[28] |
?krbi? T,Hoang TX,Maritan A,et al. Local symmetry determines the phases of linear chains:a simple model for the self-assembly of peptides[J]. Soft Matter,2019,15(28):5596-5613.
|
[29] |
Huang CC,Ravindran S,Kang MY,et al. Engineering a self-assembling leucine zipper hydrogel system with function-specific motifs for tissue regeneration[J]. ACS Biomater Sci Eng,2020,6(5):2913-2928.
|
[30] |
Kisiday J,Jin M,Kurz B,et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division:implications for cartilage tissue repair[J]. Proc Natl Acad Sci U S A,2002,99(15):9996-10001.
|
[31] |
Zanotto G,Liebesny P,Barrett M,et al. Trypsin pre-treatment combined with growth factor functionalized self-assembling peptide hydrogel improves cartilage repair in rabbit model[J]. J Orthop Res,2019,37(11):2307-2315.
|
[32] |
Gelain F,Luo ZL,Zhang SG. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel[J]. Chem Rev,2020,120(24):13434-13460.
|
[33] |
Zuo YP,Xiong QC,Li QW,et al. Osteogenic growth peptide (OGP)-loaded amphiphilic peptide (NapFFY) supramolecular hydrogel promotes osteogenesis and bone tissue reconstruction[J]. Int J Biol Macromol,2022,195:558-564.
|
[34] |
Ghosh M,Halperin-Sternfeld M,Grinberg I,et al. Injectable alginate-peptide composite hydrogel as a scaffold for bone tissue regeneration[J]. Nanomaterials (Basel),2019,9(4):E497.
|
[35] |
Alcaide-Ruggiero L,Molina-Hernández V,Granados MM,et al. Main and minor types of collagens in the articular cartilage:the role of collagens in repair tissue evaluation in chondral defects[J]. Int J Mol Sci,2021,22(24):13329.
|
[36] |
Sun M,Luo EY,Adams SM,et al. Collagen XI regulates the acquisition of collagen fibril structure,organization and functional properties in tendon[J]. Matrix Biol,2020,94:77-94.
|
[37] |
Xu YJ,Kirchner M. Collagen mimetic peptides[J]. Bioengineering (Basel),2021,8(1):5.
|
[38] |
Qin JY,Luo TZ,Kiick KL. Self-assembly of stable nanoscale platelets from designed elastin-like peptide-collagen-like peptide bioconjugates[J]. Biomacromolecules,2019,20(4):1514-1521.
|
[39] |
Pires MM,Lee J,Ernenwein D,et al. Controlling the morphology of metal-promoted higher ordered assemblies of collagen peptides with varied core lengths[J]. Langmuir,2012,28(4):1993-1997.
|
[40] |
Pal VK,Jain R,Roy S. Tuning the supramolecular structure and function of collagen mimetic ionic complementary peptides via electrostatic interactions[J]. Langmuir,2020,36(4):1003-1013.
|
[41] |
Sun XX,He MM,Wang L,et al. Luminescent biofunctional collagen mimetic nanofibers[J]. ACS Omega,2019,4(15):16270-16279.
|
[42] |
Brea RJ,Reiriz C,Granja JR. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes[J]. Chem Soc Rev,2010,39(5):1448-1456.
|
[43] |
He B,Yuan X,Jiang DM. Molecular self-assembly guides the fabrication of peptide nanofiber scaffolds for nerve repair[J]. RSC Adv,2014,4(45):23610-23621.
|
[44] |
Li ZQ,Hou TY,Luo F,et al. Bone marrow enriched graft,modified by self-assembly peptide,repairs critically-sized femur defects in goats[J]. Int Orthop,2014,38(11):2391-2398.
|
[45] |
Hu Y,Lin R,Zhang PC,et al. Electrostatic-driven lamination and untwisting of β-sheet assemblies[J]. ACS Nano,2016,10(1):880-888.
|
[46] |
Tsonchev S,Schatz GC,Ratner MA. Electrostatically-directed self-assembly of cylindrical peptide amphiphile nanostructures[J]. J Phys Chem B,2004,108(26):8817-8822.
|
[47] |
Mehta AK,Lu K,Childers WS,et al. Facial symmetry in protein self-assembly[J]. J Am Chem Soc,2008,130(30):9829-9835.
|
[48] |
Behanna HA,Donners JJ,Gordon AC,et al. Coassembly of amphiphiles with opposite peptide polarities into nanofibers[J]. J Am Chem Soc,2005,127(4):1193-1200.
|
[49] |
Rivas M,del Valle LJ,Alemán C,et al. Peptide self-assembly into hydrogels for biomedical applications related to hydroxyapatite[J]. Gels,2019,5(1):E14.
|
[50] |
Cui HG,Webber MJ,Stupp SI. Self-assembly of peptide amphiphiles:from molecules to nanostructures to biomaterials[J]. Biopolymers,2010,94(1):1-18.
|
[51] |
Koss KM,Unsworth LD. Neural tissue engineering:Bioresponsive nanoscaffolds using engineered self-assembling peptides[J]. Acta Biomater,2016,44:2-15.
|
[52] |
de Groot NS,Parella T,Aviles FX,et al. Ile-phe dipeptide self-assembly:clues to amyloid formation[J]. Biophys J,2007,92(5):1732-1741.
|
[53] |
Sahoo JK,Nazareth C,VandenBerg MA,et al. Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure[J]. Biomater Sci,2017,5(8):1526-1530.
|
[54] |
Chen CH,Hsu EL,Stupp SI. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration[J]. Bone,2020,141:115565.
|
[55] |
Sargeant TD,Aparicio C,Goldberger JE,et al. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells[J]. Acta Biomater,2012,8(7):2456-2465.
|
[56] |
Castelletto V,Edwards-Gayle CJC,Greco F,et al. Self-assembly,tunable hydrogel properties,and selective anti-cancer activity of a carnosine-derived lipidated peptide[J]. ACS Appl Mater Interfaces,2019,11(37):33573-33580.
|
[57] |
Moradi F,Bahktiari M,Joghataei MT,et al. BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration[J]. J Neurosci Res,2012,90(12):2335-2348.
|
[58] |
He B,Ou YS,Zhou A,et al. Functionalized d-form self-assembling peptide hydrogels for bone regeneration[J]. Drug Des Devel Ther,2016,10:1379-1388.
|
[59] |
Kisiday JD,Colbath AC,Tangtrongsup S. Effect of culture duration on chondrogenic preconditioning of equine bone marrow mesenchymal stem cells in self-assembling peptide hydrogel[J]. J Orthop Res,2019,37(6):1368-1375.
|
[60] |
Lv X,Sun CX,Hu BW,et al. Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration[J]. Front Cell Dev Biol,2020,8:864.
|
[61] |
Vitale M,Ligorio C,McAvan B,et al. Hydroxyapatite-decorated Fmoc-hydrogel as a bone-mimicking substrate for osteoclast differentiation and culture[J]. Acta Biomater,2022,138:144-154.
|
[62] |
Maia FR,Musson DS,Naot D,et al. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering[J]. Biomed Mater,2018,13(3):035012.
|
[63] |
Zehnder T,Boccaccini AR,Detsch R. Biofabrication of a co-culture system in an osteoid-like hydrogel matrix[J]. Biofabrication,2017,9(2):025016.
|
[64] |
Hulley PA,Papadimitriou-Olivgeri I,Knowles HJ. Osteoblast-osteoclast coculture amplifies inhibitory effects of FG-4592 on human osteoclastogenesis and reduces bone resorption[J]. JBMR Plus,2020,4(7):e10370.
|
[65] |
Collin-Osdoby P,Osdoby P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells[J]. Methods Mol Biol,2012,816:187-202.
|
[66] |
Aderibigbe B,Aderibigbe I,Popoola P. Design and biological evaluation of delivery systems containing bisphosphonates[J]. Pharmaceutics,2016,9(1):E2.
|
[67] |
Vantucci CE,Krishan L,Cheng A,et al. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma[J]. Biomater Sci,2021,9(5):1668-1682.
|
[68] |
Zha Y,Li YW,Lin TY,et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics,2021,11(1):397-409.
|
[69] |
Onak G,G?kmen O,Yaral? ZB,et al. Enhanced osteogenesis of human mesenchymal stem cells by self-assembled peptide hydrogel functionalized with glutamic acid templated peptides[J]. J Tissue Eng Regen Med,2020,14(9):1236-1249.
|
[70] |
Zhang RJ,Liu Y,Qi YQ,et al. Self-assembled peptide hydrogel scaffolds with VEGF and BMP-2 enhanced in vitro angiogenesis and osteogenesis[J]. Oral Dis,2022,28(3):723-733.
|
[71] |
Zhao WK,Li YL,Zhou A,et al. Controlled release of basic fibroblast growth factor from a peptide biomaterial for bone regeneration[J]. R Soc Open Sci,2020,7(4):191830.
|
[72] |
Panek M,Antunovi? M,Pribol?an L,et al. Bone tissue engineering in a perfusion bioreactor using dexamethasone-loaded peptide hydrogel[J]. Materials (Basel),2019,12(6):E919.
|