高级检索

白蛋白冠的构建及其在药物制剂研究中的应用

杨清麟, 韩雷强, 刘永军, 张娜

杨清麟, 韩雷强, 刘永军, 张娜. 白蛋白冠的构建及其在药物制剂研究中的应用[J]. 中国药科大学学报, 2023, 54(1): 49-55. DOI: 10.11665/j.issn.1000-5048.20220427003
引用本文: 杨清麟, 韩雷强, 刘永军, 张娜. 白蛋白冠的构建及其在药物制剂研究中的应用[J]. 中国药科大学学报, 2023, 54(1): 49-55. DOI: 10.11665/j.issn.1000-5048.20220427003
YANG Qinglin, HAN Leiqiang, LIU Yongjun, ZHANG Na. Construction of albumin corona and its application in pharmaceutical preparation[J]. Journal of China Pharmaceutical University, 2023, 54(1): 49-55. DOI: 10.11665/j.issn.1000-5048.20220427003
Citation: YANG Qinglin, HAN Leiqiang, LIU Yongjun, ZHANG Na. Construction of albumin corona and its application in pharmaceutical preparation[J]. Journal of China Pharmaceutical University, 2023, 54(1): 49-55. DOI: 10.11665/j.issn.1000-5048.20220427003

白蛋白冠的构建及其在药物制剂研究中的应用

基金项目: 国家自然科学基金资助项目(No.81974498,No.82003704)

Construction of albumin corona and its application in pharmaceutical preparation

Funds: This study was supported by the National Natural Science Foundation of China (No.81974498; No.82003704)
  • 摘要: 蛋白冠(protein corona)是纳米颗粒与血浆蛋白之间发生非特异性相互作用后在表面吸附的蛋白层。近年来研究表明,在纳米颗粒表面修饰特定血浆蛋白质构建蛋白冠具有延长纳米颗粒血液半衰期、促进纳米颗粒靶向递送等作用,引起载药系统研究的广泛关注。其中,以血液中含量最为丰富的蛋白质白蛋白构建白蛋白冠(albumin corona)研究最为广泛。基于此,本文系统性总结了构建白蛋白冠的方法及其在药物制剂研究中的应用,以期为药物制备过程中构建白蛋白冠提供参考。
    Abstract: Protein corona is a protein layer that adsorbs on the surface after nonspecific interactions between nanoparticles and plasma proteins.In recent years, studies have shown that modification of specific plasma proteins on the surface of nanoparticles to construct protein corona can prolong the blood half-life of nanoparticles and promote the targeted delivery of nanoparticles, which has attracted widespread attention to the study of drug-carrying systems, among which, albumin corona, the most abundant protein in blood, is the most widely studied.Based on the above, this paper systematically summarized the method of constructing albumin corona and its application in the research on pharmaceutical preparations, in order to provide reference for the construction of albumin corona in the process of drug preparation.
  • [1] . Proc Natl Acad Sci U S A,2007,104(7):2050-2055.
    [2] Cai R,Chen CY. The crown and the scepter:roles of the protein Corona in nanomedicine[J]. Adv Mater,2019,31(45):e1805740.
    [3] Zhang Z,Guan J,Jiang ZX,et al. Brain-targeted drug delivery by manipulating protein corona functions[J]. Nat Commun,2019,10(1):3561.
    [4] Li LH,Zhang Q,Li JY,et al. Targeted delivery of doxorubicin using transferrin-conjugated carbon dots for cancer therapy[J]. ACS Appl Bio Mater,2021,4(9):7280-7289.
    [5] Wang CY,Zhang C,Li ZL,et al. Extending half life of H-ferritin nanoparticle by fusing albumin binding domain for doxorubicin encapsulation[J]. Biomacromolecules,2018,19(3):773-781.
    [6] Yin XL,Han LQ,Mu SJ,et al. Preparation and evaluation of etoposide-loaded lipid-based nanosuspensions for high-dose treatment of lymphoma[J]. Nanomedicine (Lond),2019,14(11):1403-1427.
    [7] Peng Q,Zhang S,Yang Q,et al. Preformed albumin corona,a protective coating for nanoparticles based drug delivery system[J]. Biomaterials,2013,34(33):8521-8530.
    [8] Li ZB,Li D,Zhang WJ,et al. Insight into the preformed albumin corona on in vitro and in vivo performances of albumin-selective nanoparticles[J]. Asian J Pharm Sci,2019,14(1):52-62.
    [9] Zhang D,Yang JC,Guan JB,et al. In vivo tailor-made protein corona of a prodrug-based nanoassembly fabricated by redox dual-sensitive paclitaxel prodrug for the superselective treatment of breast cancer[J]. Biomater Sci,2018,6(9):2360-2374.
    [10] Spada A,Emami J,Tuszynski JA,et al. The uniqueness of albumin as a carrier in nanodrug delivery[J]. Mol Pharm,2021,18(5):1862-1894.
    [11] Zhang ZP,Wang TQ,Yang R,et al. Small morph nanoparticles for deep tumor penetration via caveolae-mediated transcytosis[J]. ACS Appl Mater Interfaces,2020,12(34):38499-38511.
    [12] Tan TT,Yang Q,Chen D,et al. Chondroitin sulfate-mediated albumin corona nanoparticles for the treatment of breast cancer[J]. Asian J Pharm Sci,2021,16(4):508-518.
    [13] Zhang L,Fan J,Li GL,et al. Transcellular model for neutral and charged nanoparticles across an in vitro blood-brain barrier[J]. Cardiovasc Eng Tech,2020,11(6):607-620.
    [14] Pang ZQ,Gao HL,Chen J,et al. Intracellular delivery mechanism and brain delivery kinetics of biodegradable cationic bovine serum albumin-conjugated polymersomes[J]. Int J Nanomedicine,2012,7:3421-3432.
    [15] Ghuman J,Zunszain PA,Petitpas I,et al. Structural basis of the drug-binding specificity of human serum albumin[J]. J Mol Biol,2005,353(1):38-52.
    [16] Chen Q,Wang C,Cheng L,et al. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy[J]. Biomaterials,2014,35(9):2915-2923.
    [17] Hoonjan M,Sachdeva G,Chandra S,et al. Investigation of HSA as a biocompatible coating material for arsenic trioxide nanoparticles[J]. Nanoscale,2018,10(17):8031-8041.
    [18] Pan ZC,He XL,Song NJ,et al. Albumin-modified cationic nanocarriers to potentially create a new platform for drug delivery systems[J]. ACS Appl Mater Interfaces,2019,11(18):16421-16429.
    [19] Chen ZY,Sun Q,Yao YH,et al. Highly sensitive detection of cysteine over glutathione and homo-cysteine:new insight into the Michael addition of mercapto group to maleimide[J]. Biosens Bioelectron,2017,91:553-559.
    [20] Hoogenboezem EN,Duvall CL. Harnessing albumin as a carrier for cancer therapies[J]. Adv Drug Deliv Rev,2018,130:73-89.
    [21] Kratz F,Warnecke A,Scheuermann K,et al. Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives. Improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound[J]. J Med Chem,2002,45(25):5523-5533.
    [22] Yousefpour P,McDaniel JR,Prasad V,et al. Genetically encoding albumin binding into chemotherapeutic-loaded polypeptide nanoparticles enhances their antitumor efficacy[J]. Nano Lett,2018,18(12):7784-7793.
    [23] Miyakawa N,Nishikawa M,Takahashi Y,et al. Gene delivery of albumin binding peptide-interferon-gamma fusion protein with improved pharmacokinetic properties and sustained biological activity[J]. J Pharm Sci,2013,102(9):3110-3118.
    [24] Ding D,Yang C,Lv C,et al. Improving tumor accumulation of aptamers by prolonged blood circulation[J]. Anal Chem,2020,92(5):4108-4114.
    [25] Shan LL,Zhuo X,Zhang FW,et al. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy[J]. Theranostics,2018,8(7):2018-2030.
    [26] Zhu GZ,Lynn GM,Jacobson O,et al. Albumin/vaccine nano complexes that assemble in vivo for combination cancer immunotherapy[J]. Nat Commun,2017,8(1):1954.
    [27] Hyun H,Park J,Willis K,et al. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors[J]. Biomaterials,2018,180:206-224.
    [28] Lee HA,Park E,Lee H. Polydopamine and its derivative surface chemistry in material science:a focused review for studies at KAIST[J]. Adv Mater,2020,32(35):e1907505.
    [29] Kim H,Yuk SA,Dieterly AM,et al. Nanosac,a noncationic and soft polyphenol nanocapsule,enables systemic delivery of siRNA to solid tumors[J]. ACS Nano,2021,15(3):4576-4593.
    [30] Takeuchi T,Kitayama Y,Sasao R,et al. Molecularly imprinted nanogels acquire stealth in situ by cloaking themselves with native dysopsonic proteins[J]. Angew Chem Int Ed Engl,2017,56(25):7088-7092.
    [31] Yu YN,Luan YN,Dai W. Dynamic process,mechanisms,influencing factors and study methods of protein corona formation[J]. Int J Biol Macromol,2022,205:731-739.
    [32] Shanwar S,Liang LE,Nechaev AV,et al. Controlled formation of a protein Corona composed of denatured BSA on upconversion nanoparticles improves their colloidal stability[J]. Materials (Basel),2021,14(7):1657.
    [33] Xia B,Zhang WY,Shi JS,et al. Engineered stealth porous silicon nanoparticles via surface encapsulation of bovine serum albumin for prolonging blood circulation in vivo[J]. ACS Appl Mater Interfaces,2013,5(22):11718-11724.
    [34] Guindani C,Frey ML,Simon J,et al. Covalently binding of bovine serum albumin to unsaturated poly(globalide-Co-ε-caprolactone) nanoparticles by thiol-ene reactions[J]. Macromol Biosci,2019,19(10):e1900145.
  • 期刊类型引用(7)

    1. 刘艳,温田田,孙野,陈庆山,张丽莉,匡海学,杨炳友. 白鲜皮化学成分研究. 中成药. 2025(03): 812-821 . 百度学术
    2. 陈禹竹,徐晓敏,刘树民,卢芳. 白鲜皮及其有效成分的药理作用研究进展. 药物评价研究. 2024(02): 409-418 . 百度学术
    3. 刘新月,陈乐乐,孙鹏,展照双,王加锋. 白鲜皮化学成分、药理作用和毒性研究进展及质量标志物预测分析. 中国新药杂志. 2023(08): 799-805 . 百度学术
    4. 牛晨冬,郭丽娜,张金玲,卢宜然,王琳琳,李宗锴. 白鲜属植物化学成分与药理作用研究进展. 中成药. 2022(04): 1231-1238 . 百度学术
    5. 葛翎,路露,周谦,张秋生,蔡波,黄晓德,张峰伦,钱雪,李海涛,陈斌,曹鹏. 马齿苋醇提物体外生物学活性测定. 中国野生植物资源. 2021(04): 8-14+21 . 百度学术
    6. 梁郭智,孙淑英. 白鲜研究进展. 时珍国医国药. 2020(02): 408-411 . 百度学术
    7. 胡玉恒,孙捷,杨洁,王晓静. 3-(4′-苯甲酰基氨基-苯基)-香豆素衍生物的合成及体外降血糖活性. 中国药科大学学报. 2019(02): 168-174 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-04-26
  • 修回日期:  2023-03-01
  • 刊出日期:  2023-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭