• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

核糖体蛋白的类泛素化修饰及其功能的研究进展

吴玥, 陈依军

吴玥, 陈依军. 核糖体蛋白的类泛素化修饰及其功能的研究进展[J]. 中国药科大学学报, 2022, 53(5): 507-517. DOI: 10.11665/j.issn.1000-5048.20220501
引用本文: 吴玥, 陈依军. 核糖体蛋白的类泛素化修饰及其功能的研究进展[J]. 中国药科大学学报, 2022, 53(5): 507-517. DOI: 10.11665/j.issn.1000-5048.20220501
WU Yue, CHEN Yijun. Recent progress of functional impacts of ubiquitin-like modifications on ribosomal proteins[J]. Journal of China Pharmaceutical University, 2022, 53(5): 507-517. DOI: 10.11665/j.issn.1000-5048.20220501
Citation: WU Yue, CHEN Yijun. Recent progress of functional impacts of ubiquitin-like modifications on ribosomal proteins[J]. Journal of China Pharmaceutical University, 2022, 53(5): 507-517. DOI: 10.11665/j.issn.1000-5048.20220501

核糖体蛋白的类泛素化修饰及其功能的研究进展

基金项目: 国家自然科学基金资助项目(No.81973386)

Recent progress of functional impacts of ubiquitin-like modifications on ribosomal proteins

Funds: This study was supported by the National Natural Science Foundation of China (No.81973386)
  • 摘要: 核糖体蛋白(RP)是核糖体的组成成分,在核糖体生物合成及蛋白翻译过程中发挥重要调控作用。此外,RP在细胞中存在非核糖体功能,并可由多种形式的类泛素化修饰介导实现。RP的类泛素化修饰过程对相应RP的功能和亚细胞定位产生不同的影响,并表现出对多个生理病理过程的调控作用。本文主要对RP的SUMOylation、Neddylation和UFMylation等类泛素化系统进行介绍,并对RP的类泛素化修饰过程及其对细胞增殖、凋亡、自噬和蛋白质生命周期调控方面的影响进行总结,为相关疾病的药物治疗或干预措施带来新的启示。
    Abstract: Ribosomal proteins (RP), components of ribosomes to regulate protein biosynthesis, possess a variety of extra-ribosomal functions which can be mediated by various ubiquitination-like modifications (Ublylation).The Ublylation of RP can result in functional changes and subcellular localizations of corresponding RP, and play regulatory roles on numerous physiological and pathological processes.In this review, in addition to the introduction of Ublylation systems for RP, such as SUMOylation, Neddylation and UFMylation, we summarized recent advances in the elucidation of Ublylation processes for RP and their impacts on cell proliferation, apoptosis, autophagy and protein fate, aiming to lay a foundation for the discovery and development of novel therapeutics based on the intervention of the Ublylation processes for RP.
  • 学报》是由教育部主管、中国药科大学主办的国家级药学学术刊物,被国内外重要检索数据库收录,为中国中文核心期刊、中国科学引文数据库(CSCD)核心期刊、中国精品科技期刊及中国高校百佳科技期刊。主要报道药学学科创新性科研成果,登载合成药物化学 、天然药物化学、中药学、药剂学、药物分析学、药物代谢动力学、生物技术、生物制药工程、药理学及其他相关学科的研究成果和学术动态。本刊为双月刊,128页,国内外公开发行。

    1.1 本刊设药学前沿、获奖成果、论文、专家评述、综述、专论等栏目。论文一般在6000~8000字,综述 一 般不超过8000字,引用文献中近 5 年发表的应占 70% 以上,应包含本课题组相关研究及思考,并在文末附注已发表的相关科研成果。

    1.2 作者可以通过登录我刊网站的稿件处理系统上传稿件(http://manuscripts.cpu.edu.cn),来稿须附投稿介绍信(本刊网站下载模板),来稿请勿一稿多投(以研究快讯发表或在学术会议上宣读过的论文,可在充实内容后以研究论文发表),文责自负。本刊稿件免收审理费。

    1.3 来稿须注明通信作者,用上标 “*”标注在作者署名后,并在首页脚注处注明其电话、传真和E-mail。基金资助论文请提供相关证明的复印件(扫描后上传至稿件处理系统),并在首页脚注注明基金名称和项目编号,在英文关键词后注明基金名称(英文)和项目编号。例:

    *通信作者 Tel:025-83271566 E-mail:xuebao@cpu.edu.cn

    基金项目 国家自然科学基金项目(No.59637050)

    This study was supported by the National Natural Science Foundation of China(No.59637050)

    1.4 来稿进入审稿程序后,一般 2 个月内通知作者稿件审理情况。投稿后 2 个月未收到通知者,请直接与编辑部联系。基金资助论文在符合发表的条件下优先录用,国家重大项目基金论文可进入快速评审通道,并尽快发表。

    1.5 需作修改的稿件,请作者按照退修通知要求修改并逐项加以说明。请将修改稿连同修改说明上传至本刊稿件处理系统。退修时间超过60 天,则按新稿处理。

    1.6 来稿是否采用,均由本刊编委会最终审定。本编辑部对来稿可作文字上的修改、删节,涉及内容的重大修改须征得作者同意。文稿刊用前,编辑部与作者签署版权转让合同。为扩大学术交流渠道,本刊被国内外著名数据库收录。稿件一经录用,将同时被数据库收录,作者著作权使用费与本刊稿酬一次性给付。如作者不同意收录,请在投稿时声明,否则将视为同意。

    2.1 文题 文题应简明、具体,确切反映文章的主旨。 中文题名一般不超过20 个字,应避免使用非公知公用的缩略语、字符、代号和商品名称,尽可能不出现数学式和化学式。英文题名应与中文题名含义一致。

    2.2 作者 署名仅限在选定课题、制定研究方案、具体研究工作和撰写文稿等方面作出主要贡献,并能就论文内容进行答辩者,一般不超过6人。为本文提供帮助的其他人可写在致谢项下。请标明作者的工作单位,包括单位全称、所在城市及邮政编码。

    2.3 摘要 论文需要同时提供中文和英文摘要。摘要以提供论文的内容梗概为目的,不加评论和补充解释。简明、确切地论述研究目的、采用的方法原理和结论,具有相对独立性。中文和英文摘要均要求采用报道性摘要。具体要求:中英文摘要均为一段式,内容比较具体,一般需要列举关键数据。中英文摘要应保持内容基本一致。

    2.4 关键词 一般3~8个,多个关键词之间用分号分隔,中英文关键词应相对应。

    2.5 引言 概述课题的理论依据、研究思路、实验基础及国内外研究现状,明确指出本文的研究目的及创新之处。

    2.6 材料 动植物、微生物应注明拉丁学名、植物标本应注明鉴定人和存放地。实验动物应注明清洁等级和合格证号。当实验以人或动物为研究对象时,作者应当声明,只有符合机构责任委员会的伦理(道德)标准或依照1975年制定的《赫尔辛基宣言》(1983 年修订),才能进行人体实验。其他主要材料、仪器应说明品种、来源、规格、型号、产地。

    2.7 方法 尽量简单明了,便于他人重复实验。一般方法可引文献,如有改进的地方应重点突出,创新的方法则宜详述。

    2.8 结果和讨论 重点叙述本文研究的结果,新发现及得出的结论与观点。讨论中不重复引言和结果中已叙述的内容。

    2.9 图表 能用文字说明的问题,尽量不用图表。同一数据不要同时用图和表表示。图表一律用英文表达。表采用“三线表”。图中坐标的量和单位符号标于坐标轴外侧。照片要求清晰。

    2.10 结构式和反应式 结构式不要夹杂于行文中,而应以相应的化学名称或分子式表示。反应式转行时应在反应方向符号“→、$ \rightleftharpoons $”等处转行。请尽量采用ChemDraw软件绘制结构式。

    2.11 数字 凡是可以用阿拉伯数字且使用得体的地方,均应使用阿拉伯数字,并应注意有效数字的使用。平均数应写出标准差($ \bar{x}\pm s $)。百分数范围 20%~30%不能写成 20~30%。统计学显著性用 “*P < 0.05,**P < 0.01,***P < 0.001 vs A”表示。

    2.12 单位和量 严格执行GB 3100-3102有关量和单位的规定。量的符号一律采用斜体,如:相对分子质量(Mr),吸收度(A),质量浓度(c),时间(t),等。量值的单位,一律使用国际符号,并用正体,如:1 M HCl应为1 mol/L HCl,转速rpm 应为r/min。量值和单位间空格。图表中用符号表示数值的量和单位时,采用量与单位相比的形式,如 t/min, c/(mol/L)。在一个组合剂量单位代号内,不得有一条以上的斜线,如mg/kg/d应写成mg/(kg·d)。

    2.13 代号和缩写 文中可使用国际代号和缩写,例如:1秒:1 s;2分钟:2 min;3小时:3 h;4天:4 d。相对标准偏差RSD,静脉注射iv,肌肉注射im,腹腔注射ip,皮下注射sc,灌胃ig,口服po

    2.14 药名 中文药名以《中华人民共和国药典》(2020年版)和《中国药品通用名称》(化学工业出版社, 2014)为准。英文药名尽量与国际通用名称一致,采用国际非专利药名(international nonproprietary names, INN)。国家食品药品监督管理局批准的新药,用批准的药名。药名较长时可缩写,但首次出现时应予以注明。药名应少用代号,不用商品名。

    2.15 理化数据表示法 请参照以下写法:······得白色结晶(1.8 g, 76.0%):mp 209~211℃(EtOH/Et2O); $ [{\text{α}}]^{20}_{\rm{D}} $−141.30°(c 0. 403, CHCl3 ):Anal. C21H25O2Cl, C 72. 51, H 7.31, Cl 10. 32(Req. C 72. 89, H 7.31, Cl 10. 29);TLC Rf 0. 44(CHCl3-EtOH, 9∶1);UV(CH3OH)λmax 284(lg ε 4.42)nm;IR( KBr, ν): 3370, 3000, 2200, 1600 cm−11 H NMR (CDCl3, 300 MHz)δ:0.94, 1.16(6H, s, C18 和 C19-CH3 ), 5.59 (1H, s, C6-H), 6.16(2H, s, C4-H, C7-H);MS m/z 343(M)+

    2.16 参考文献 参考文献应限于作者直接阅读过的、发表在正式出版物上的文献。采用顺序编码制,在文内按论文引用文献出现的先后用阿拉伯数字连续编号,如[1-2][3-5],标在相应文字的右上角。

    为利于计算机处理和保证数据库准确检索与统计的原则,须用文献类型标识标注参考文献的类型。 电子文献被引用时需在参考文献类型标识中同时标明其载体类型[文献类型标识/载体类型标识],如网上期刊(J/OL)。

    常见参考文献类型及其标识:

    文献类型 专著 论文集 报纸文章 期刊文章
    标识 M C N J
    文献类型 学位论文 报告 标准 专利
    标识 D E S P
    下载: 导出CSV 
    | 显示表格

    参考文献的著录格式示例:

    连续出版物中的析出文献

    作者只列3人,后面加“et al”,姓名采用姓前名后著录法,西文刊名缩写按 Index Medicus,不要缩写点,中文刊名用英文缩写名称,括号内加注中文期刊的刊名。

    [序号]  作者. 题名[J]. 刊名, 年, 卷(期): 起止页码.

    [1] Zhang JY, Zhang JS, Zhang Y, et al. Studies on the intes-tinal absorption of crocin in rats and determination of the partition coefficient[J]. J China Pharm Univ(中国药科大学学报), 2004, 35(3): 283-284.

    [2] Zhang HH, Kumar S, Barnett AH, et al. C eiling culture of mature human adipocytes:use in studies of adipocyte functions[J]. J Endocrinol, 2000, 164(1/2): 119-128.

    专 著

    [序号] 编者. 书名[M]. 版本(第 1 版不写). 出版地: 出版者, 出版年: 起止页码.

    [3] Qi RM, Wang ZG, Wang SQ. Advances in Pharmacology (药理学进展)[M]. Beijing: People’s Medical Publish-ing House, 2003: 74.

    [4] Peebles PZ, Jr. Probability, Random Rariable, and Ran-dom Signal Principles[M]. 4th ed. New York: McGraw Hill, 2001: 149.

    标 准

    [序号] 起草责任著. 标准代号 标准序号—发布年 标准名称[S]. 出版地: 出版者, 出版年: 引文页码.

    [5] China Association for Standardization. GB/T 21853−2008 Chemicals−Partition Coeficient ( n-octanol/water)−Shake Flask Method [化学品分配系数(正丁醇-水)摇瓶法试验][S]. Beijing: Standards Press of China, 2008.

    [6] Chinese Pharmacopoeia Commission. Chinese Pharmaco-poeia: part 2( 中华人民共和国药典:二部)[S]. Bei-jing: China Medical Science Press, 2010: 310-312 .

    专利文献

    [序号] 专利申请者或所有者.专利题名: 专利号[ P]. 公 告日期或公开日期[引用日期].

    [7] Lafon L. New benzhydrysulphinyl derivatives: 4066686A[P]. 1978-01-03[2011-10-25].

    电子文献

    [序号] 主要责任者. 题名:其他题名信息[文献类型标识/载体类型标识]. 出版地: 出版者,出版年(更新或修改日期)[引用日期]. 获取和访问路径.

    [8] U. S. Food and Drug Administration. FDA approves shard system REMS for TIRF products[EB/OL].(2011-12-29)[2012-01-13]. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm285345.htm.

    学位论文

    [序号] 作者.题名[D]. 保存地: 保存单位, 年份.

    [9] Tian Z. Study of the clinical anti-aggregating effect of picotamide on platelet(吡考他胺抗血小板聚集性的临床研究)[D]. Changchun: Jilin University, 2004.

    (2024年2月修订)

  • [1] . Annu Rev Biochem,2019,88:281-306.
    [2] de la Cruz J,Gómez-Herreros F,Rodríguez-Galán O,et al. Feedback regulation of ribosome assembly[J]. Curr Genet,2018,64(2):393-404.
    [3] Ramu VS,Dawane A,Lee S,et al. Ribosomal protein QM/RPL10 positively regulates defence and protein translation mechanisms during nonhost disease resistance[J]. Mol Plant Pathol,2020,21(11):1481-1494.
    [4] Johnson AG,Flynn RA,Lapointe CP,et al. A memory of ES25 loss drives resistance phenotypes[J]. Nucleic Acids Res,2020,48(13):7279-7297.
    [5] Li YY,Zhang JT,Sun HL,et al. Lnc-Rps4l-encoded peptide RPS4XL regulates RPS6 phosphorylation and inhibits the proliferation of PASMCs caused by hypoxia[J]. Mol Ther,2021,29(4):1411-1424.
    [6] Jung JH,Lee H,Kim JH,et al. p53-dependent apoptotic effect of puromycin via binding of ribosomal protein L5 and L11 to MDM2 and its combination effect with RITA or doxorubicin[J]. Cancers,2019,11(4):582.
    [7] Ebright RY,Lee S,Wittner BS,et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis[J]. Science,2020,367(6485):1468-1473.
    [8] Park YJ,Kim SH,Kim TS,et al. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair[J]. Cell Mol Life Sci,2021,78(7):3591-3606.
    [9] Odintsova TI,Müller EC,Ivanov AV,et al. Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing[J]. J Protein Chem,2003,22(3):249-258.
    [10] Wirth M,Schick M,Keller U,et al. Ubiquitination and ubiquitin-like modifications in multiple myeloma:biology and therapy[J]. Cancers,2020,12(12):3764.
    [11] Lezzerini M,Penzo M,O′Donohue MF,et al. Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism[J]. Nucleic Acids Res,2019,48(2):770-787.
    [12] Guan JY,Han SC,Wu JE,et al. Ribosomal protein L13 participates in innate immune response induced by foot-and-mouth disease virus[J]. Front Immunol,2021,12:616402.
    [13] Liu PY,Tee AE,Milazzo G,et al. The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35[J]. Nat Commun,2019,10:5026.
    [14] Ribezzo F,Snoeren IAM,Ziegler S,et al. Rps14,Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q-syndrome[J]. Leukemia,2019,33(7):1759-1772.
    [15] Swatek KN,Komander D. Ubiquitin modifications[J]. Cell Res,2016,26(4):399-422.
    [16] Park J,Cho J,Song EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res,2020,43(11):1144-1161.
    [17] Dougherty SE,Maduka AO,Inada T,et al. Expanding role of ubiquitin in translational control[J]. Int J Mol Sci,2020,21(3):1151.
    [18] Cappadocia L,Lima CD. Ubiquitin-like protein conjugation:structures,chemistry,and mechanism[J]. Chem Rev,2018,118(3):889-918.
    [19] Oh JG,Watanabe S,Lee A,et al. miR-146a suppresses SUMO1 expression and induces cardiac dysfunction in maladaptive hypertrophy[J]. Circ Res,2018,123(6):673-685.
    [20] Lin H,Yan Y,Luo YF,et al. IP6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion[J]. Nat Commun,2021,12:2461.
    [21] Yang JJ,Zhou YL,Xie SD,et al. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer[J]. J Exp Clin Cancer Res,2021,40(1):206.
    [22] Xirodimas DP,Sundqvist A,Nakamura A,et al. Ribosomal proteins are targets for the NEDD8 pathway[J]. EMBO Rep,2008,9(3):280-286.
    [23] Müller S,Ledl A,Schmidt D. SUMO:a regulator of gene expression and genome integrity[J]. Oncogene,2004,23(11):1998-2008.
    [24] Wang LL,Wansleeben C,Zhao SL,et al. SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development[J]. EMBO Rep,2014,15(8):878-885.
    [25] Zhao XL. SUMO-mediated regulation of nuclear functions and signaling processes[J]. Mol Cell,2018,71(3):409-418.
    [26] Bernier-Villamor V,Sampson DA,Matunis MJ,et al. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1[J]. Cell,2002,108(3):345-356.
    [27] Wang TS,Cao Y,Zheng Q,et al. SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism[J]. Mol Cell,2019,75(4):823-834.e5.
    [28] Peng Y,Wang ZX,Wang ZQ,et al. SUMOylation down-regulates rDNA transcription by repressing expression of upstream-binding factor and proto-oncogene c-Myc[J]. J Biol Chem,2019,294(50):19155-19166.
    [29] Schneeweis C,Hassan Z,Schick M,et al. The SUMO pathway in pancreatic cancer:insights and inhibition[J]. Br J Cancer,2021,124(3):531-538.
    [30] Jang CY,Shin HS,Kim HD,et al. Ribosomal protein S3 is stabilized by sumoylation[J]. Biochem Biophys Res Commun,2011,414(3):523-527.
    [31] Kasera M,Ingole KD,Rampuria S,et al. Global sumoylome adjustments in basal defenses of arabidopsis thaliana involve complex interplay between small-ubiquitin like modifiers and the negative immune regulator suppressor of rps4-rld1[J]. Front Cell Dev Biol,2021,9:680760.
    [32] Haindl M,Harasim T,Eick D,et al. The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing[J]. EMBO Rep,2008,9(3):273-279.
    [33] Matafora V,D''Amato A,Mori S,et al. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition[J]. Mol Cell Proteom,2009,8(10):2243-2255.
    [34] Enchev RI,Schulman BA,Peter M. Protein neddylation:beyond cullin–RING ligases[J]. Nat Rev Mol Cell Biol,2015,16(1):30-44.
    [35] Li J,Zou JQ,Littlejohn R,et al. Neddylation,an emerging mechanism regulating cardiac development and function[J]. Front Physiol,2020,11:612927.
    [36] Zou T,Zhang JY. Diverse and pivotal roles of neddylation in metabolism and immunity[J]. FEBS J,2021,288(13):3884-3912.
    [37] Song QQ,Feng SQ,Peng WJ,et al. Cullin-RING ligases as promising targets for gastric carcinoma treatment[J]. Pharmacol Res,2021,170:105493.
    [38] Baek K,Scott DC,Schulman BA. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases[J]. Curr Opin Struct Biol,2021,67:101-109.
    [39] Pan ZQ,Kentsis A,Dias DC,et al. Nedd8 on cullin:building an expressway to protein destruction[J]. Oncogene,2004,23(11):1985-1997.
    [40] Li QM,Wang SZ. Advances of relationship between protein Neddylation and cancer[J]. J China Pharm Univ(中国药科大学学报),2018,49(3):272-278.
    [41] Zhang SZ,Sun Y. Cullin RING ligase 5 (CRL-5):neddylation activation and biological functions[J]. Adv Exp Med Biol,2020,1217:261-283.
    [42] Dubiel W,Chaithongyot S,Dubiel D,et al. The COP9 signalosome:a multi-DUB complex[J]. Biomolecules,2020,10(7):1082.
    [43] Liu Y,Deisenroth C,Zhang YP. RP-MDM2-p53 pathway:linking ribosomal biogenesis and tumor surveillance[J]. Trends Cancer,2016,2(4):191-204.
    [44] Xiong XF,Cui DR,Bi YL,et al. Neddylation modification of ribosomal protein RPS27L or RPS27 by MDM2 or NEDP1 regulates cancer cell survival[J]. FASEB J,2020,34(10):13419-13429.
    [45] Sundqvist A,Liu G,Mirsaliotis A,et al. Regulation of nucleolar signalling to p53 through NEDDylation of L11[J]. EMBO Rep,2009,10(10):1132-1139.
    [46] Zhou X,Hao Q,Liao J,et al. Ribosomal protein S14 unties the MDM2–p53 loop upon ribosomal stress[J]. Oncogene,2013,32(3):388-396.
    [47] Zhang J,Bai D,Ma X,et al. hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14[J]. Oncogene,2014,33(2):246-254.
    [48] Mahata B,Sundqvist A,Xirodimas DP. Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner[J]. Oncogene,2012,31(25):3060-3071.
    [49] Yang R,Wang HM,Kang BX,et al. CDK5RAP3,a UFL1 substrate adaptor,is crucial for liver development[J]. Development,2019,146(2):dev169235.
    [50] Banerjee S,Kumar M,Wiener R. Decrypting UFMylation:how proteins are modified with UFM1[J]. Biomolecules,2020,10(10):1442.
    [51] Walczak CP,Leto DE,Zhang LC,et al. Ribosomal protein RPL26 is the principal target of UFMylation[J]. Proc Natl Acad Sci U S A,2019,116(4):1299-1308.
    [52] Kumar M,Padala P,Fahoum J,et al. Structural basis for UFM1 transfer from UBA5 to UFC1[J]. Nat Commun,2021,12:5708.
    [53] Xie Z,Fang Z,Pan ZZ. Ufl1/RCAD,a Ufm1 E3 ligase,has an intricate connection with ER stress[J]. Int J Biol Macromol,2019,135:760-767.
    [54] Wei Y,Xu XZ. UFMylation:a unique & fashionable modification for life[J]. Genom Proteom Bioinform,2016,14(3):140-146.
    [55] Witting KF,Mulder MPC. Highly specialized ubiquitin-like modifications:shedding light into the UFM1 Enigma[J]. Biomolecules,2021,11(2):255.
    [56] Zheng N,Shabek N. Ubiquitin ligases:structure,function,and regulation[J]. Annu Rev Biochem,2017,86:129-157.
    [57] Yoo HM,Kang SH,Kim JY,et al. Modification of ASC1 by UFM1 is crucial for ERα transactivation and breast cancer development[J]. Mol Cell,2014,56(2):261-274.
    [58] Wang LH,Xu Y,Rogers H,et al. UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis[J]. Cell Res,2020,30(1):5-20.
    [59] Simsek D,Tiu GC,Flynn RA,et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity[J]. Cell,2017,169(6):1051-1065.e18.
    [60] Schuren ABC,Boer IGJ,Bouma EM,et al. The UFM1 pathway impacts HCMV US2-mediated degradation of HLA class I[J]. Molecules,2021,26(2):287.
    [61] van der Veen AG,Ploegh HL. Ubiquitin-like proteins[J]. Annu Rev Biochem,2012,81:323-357.
    [62] Perng YC,Lenschow DJ. ISG15 in antiviral immunity and beyond[J]. Nat Rev Microbiol,2018,16(7):423-439.
    [63] Mustachio LM,Lu Y,Kawakami M,et al. Evidence for the ISG15-specific deubiquitinase USP18 as an antineoplastic target[J]. Cancer Res,2018,78(3):587-592.
    [64] Freitas BT,Scholte FEM,Bergeron é,et al. How ISG15 combats viral infection[J]. Virus Res,2020,286:198036.
    [65] Theng SS,Wang W,Mah WC,et al. Disruption of FAT10-MAD2 binding inhibits tumor progression[J]. Proc Natl Acad Sci U S A,2014,111(49):E5282-E5291.
    [66] Aichem A,Groettrup M. The ubiquitin-like modifier FAT10-much more than a proteasome-targeting signal[J]. J Cell Sci,2020,133(14):jcs246041.
    [67] Lim CB,Zhang DW,Lee CGL. FAT10,a gene up-regulated in various cancers,is cell-cycle regulated[J]. Cell Div,2006,1:20.
    [68] Aichem A,Pelzer C,Lukasiak S,et al. USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10,which FAT10ylates itself in cis[J]. Nat Commun,2010,1:13.
    [69] Aichem A,Catone N,Groettrup M. Investigations into the auto-FAT10ylation of the bispecific E2 conjugating enzyme UBA6-specific E2 enzyme 1[J]. FEBS J,2014,281(7):1848-1859.
    [70] Okumura F,Zou W,Zhang DE. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP[J]. Genes Dev,2007,21(3):255-260.
    [71] Spinnenhirn V,Bitzer A,Aichem A,et al. Newly translated proteins are substrates for ubiquitin,ISG15,and FAT10[J]. FEBS Lett,2017,591(1):186-195.
    [72] Nahorski MS,Maddirevula S,Ishimura R,et al. Biallelic UFM1 and UFC1 mutations expand the essential role of UFMylation in brain development[J]. Brain,2018,141(7):1934-1945.
    [73] Su M,Yue ZH,Wang H,et al. UFMylation is activated in vascular remodeling and lipopolysaccharide-induced endothelial cell injury[J]. DNA Cell Biol,2018,37(5):426-431.
    [74] Lin YL,Chung CL,Chen MH,et al. SUMO protease SMT7 modulates ribosomal protein L30 and regulates cell-size checkpoint function[J]. Plant Cell,2020,32(4):1285-1307.
    [75] El Motiam A,Vidal S,de la Cruz-Herrera CF,et al. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function[J]. FASEB J,2019,33(1):643-651.
    [76] Liang JR,Lingeman E,Luong T,et al. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation[J]. Cell,2020,180(6):1160-1177.e20.
    [77] Fernández A,Ordó?ez R,Reiter RJ,et al. Melatonin and endoplasmic reticulum stress:relation to autophagy and apoptosis[J]. J Pineal Res,2015,59(3):292-307.
    [78] Bailly A,Perrin A,Bou Malhab LJ,et al. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway[J]. Oncogene,2016,35(4):415-426.
    [79] Chang SC,Ding JL. Ubiquitination and SUMOylation in the chronic inflammatory tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer,2018,1870(2):165-175.
    [80] Baek K,Krist DT,Prabu JR,et al. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly[J]. Nature,2020,578(7795):461-466.
    [81] Liu J,Guan D,Dong MG,et al. UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination[J]. Nat Cell Biol,2020,22(9):1056-1063.
    [82] Wang FT,Zhao B. UBA6 and its bispecific pathways for ubiquitin and FAT10[J]. Int J Mol Sci,2019,20(9):2250.
    [83] Laplaza JM,Bostick M,Scholes DT,et al. Saccharomyces cerevisiae ubiquitin-like protein Rub1 conjugates to cullin proteins Rtt101 and Cul3 in vivo[J]. Biochem J,2004,377(Pt 2):459-467.
    [84] Petroski MD,Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases[J]. Nat Rev Mol Cell Biol,2005,6(1):9-20.
    [85] Sun XX,Chen YX,Su YL,et al. SUMO protease SENP1 deSUMOylates and stabilizes c-myc[J]. Proc Natl Acad Sci U S A,2018,115(43):10983-10988.
    [86] Han SJ,Shin H,Oh JW,et al. The protein neddylation inhibitor MLN4924 suppresses patient-derived glioblastoma cells via inhibition of ERK and AKT signaling[J]. Cancers,2019,11(12):1849.
    [87] Xie P,Peng ZQ,Chen YJ,et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development[J]. Cell Res,2021,31(3):291-311.
    [88] Sharma P,Kuehn MR. SENP1-modulated sumoylation regulates retinoblastoma protein (RB) and Lamin A/C interaction and stabilization[J]. Oncogene,2016,35(50):6429-6438.
    [89] Barbier-Torres L,Delgado TC,García-Rodríguez JL,et al. Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer[J]. Oncotarget,2015,6(4):2509-2523.
    [90] Lee JS,Chu IS,Heo J,et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling[J]. Hepatology,2004,40(3):667-676.
    [91] Kukkula A,Ojala VK,Mendez LM,et al. Therapeutic potential of targeting the SUMO pathway in cancer[J]. Cancers,2021,13(17):4402.
    [92] Wiechmann S,G?rtner A,Kniss A,et al. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation[J]. J Biol Chem,2017,292(37):15340-15351.
    [93] Yu Q,Jiang YH,Sun Y. Anticancer drug discovery by targeting cullin neddylation[J]. Acta Pharm Sin B,2020,10(5):746-765.
    [94] da Silva SR,Paiva SL,Lukkarila JL,et al. Exploring a new frontier in cancer treatment:targeting the ubiquitin and ubiquitin-like activating enzymes[J]. J Med Chem,2013,56(6):2165-2177.
    [95] Zhou LS,Jiang YY,Luo Q,et al. Neddylation:a novel modulator of the tumor microenvironment[J]. Mol Cancer,2019,18(1):77.
    [96] Shi C,Wang Y,Guo YN,et al. Cooperative down-regulation of ribosomal protein L10 and NF-κB signaling pathway is responsible for the anti-proliferative effects by DMAPT in pancreatic cancer cells[J]. Oncotarget,2017,8(21):35009-35018.
    [97] Fan JB,Arimoto KL,Motamedchaboki K,et al. Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis[J]. Sci Rep,2015,5:12704.
    [98] Carter SA,Vousden KH. p53-ubl fusions as models of ubiquitination,sumoylation and neddylation of p53[J]. Cell Cycle,2008,7(16):2519-2528.
    [99] El-Asmi F,McManus FP,Brantis-de-Carvalho CE,et al. Cross-talk between SUMOylation and ISGylation in response to interferon[J]. Cytokine,2020,129:155025.
  • 期刊类型引用(3)

    1. 刘成波,何冰,谭鸿舟,吴虹,何黎琴. 新型大黄酸丹皮酚偶联物的合成及抗炎活性. 合成化学. 2024(03): 261-266 . 百度学术
    2. 尚飞扬,刘成波,谭鸿舟,何冰,何黎琴. 3-乙酰基-7-羟基香豆素衍生物的设计、合成及抗血小板聚集活性. 中国药科大学学报. 2024(03): 367-374 . 本站查看
    3. 陈芳芳,章军,邸继鹏,赵桉熠,许煜迪,陈畅,刘安,郭丛,闫智勇. 白及饮片等级评价. 中成药. 2024(12): 3917-3925 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-02-16
  • 修回日期:  2022-04-06
  • 刊出日期:  2022-10-24

目录

/

返回文章
返回
x 关闭 永久关闭