• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

毛发中甲基苯丙胺、苯丙胺、6-单乙酰吗啡及吗啡的检测阈值评估

施晓露, 车鑫锋, 吴健美, 狄斌, 乔宏伟, 王优美

施晓露, 车鑫锋, 吴健美, 狄斌, 乔宏伟, 王优美. 毛发中甲基苯丙胺、苯丙胺、6-单乙酰吗啡及吗啡的检测阈值评估[J]. 中国药科大学学报, 2022, 53(5): 554-562. DOI: 10.11665/j.issn.1000-5048.20220506
引用本文: 施晓露, 车鑫锋, 吴健美, 狄斌, 乔宏伟, 王优美. 毛发中甲基苯丙胺、苯丙胺、6-单乙酰吗啡及吗啡的检测阈值评估[J]. 中国药科大学学报, 2022, 53(5): 554-562. DOI: 10.11665/j.issn.1000-5048.20220506
SHI Xiaolu, CHE Xinfeng, WU Jianmei, DI Bin, QIAO Hongwei, WANG Youmei. Evaluation of the cut-off value of methamphetamine,amphetamine,6-monoacetylmorphine, and morphine in hair[J]. Journal of China Pharmaceutical University, 2022, 53(5): 554-562. DOI: 10.11665/j.issn.1000-5048.20220506
Citation: SHI Xiaolu, CHE Xinfeng, WU Jianmei, DI Bin, QIAO Hongwei, WANG Youmei. Evaluation of the cut-off value of methamphetamine,amphetamine,6-monoacetylmorphine, and morphine in hair[J]. Journal of China Pharmaceutical University, 2022, 53(5): 554-562. DOI: 10.11665/j.issn.1000-5048.20220506

毛发中甲基苯丙胺、苯丙胺、6-单乙酰吗啡及吗啡的检测阈值评估

基金项目: 公安部科技强警基础工作专项资助项目(No.2020GABJC22)

Evaluation of the cut-off value of methamphetamine,amphetamine,6-monoacetylmorphine, and morphine in hair

Funds: This study was supported by the Special Project of Basic Work of Strengthening Police by Science and Technology of the Ministry of Public Security (No.2020GABJC22)
  • 摘要: 建立并优化快速检测甲基苯丙胺、苯丙胺、6-单乙酰吗啡及吗啡在毛发中含量的超高效液相色谱-质谱(UPLC-MS/MS)方法,对吸毒者与毒品实验室技术人员毛发中目标物的浓度进行考察并进行阈值评估。将清洗后的毛发样品经甲醇-水(7∶3)在3 000 r/min条件下研磨提取100 s后调节进样体积为甲醇-水(1∶1)使用UPLC-MS/MS分析。色谱柱为Waters Acquity BEH C18(2.1 mm × 100 mm,1.7 μm),流动相为5 mmol/L甲酸铵-0.1%甲酸水溶液及乙腈,0.4 mL/min梯度洗脱。质谱采用ESI+离子源,MRM多反应监测,测定4种目标物的定性离子对和定量离子对。优化后的方法定量限低,提取率较优化前更高。各目标物在0.01 ~ 5 ng/mg(除苯丙胺为0.01 ~ 4 ng/mg)范围内线性关系良好(R2 ≥ 0.999 6),定量限均为0.01 ng/mg,检出限范围为0.001 ~ 0.008 ng/mg;准确度、精密度基质效应和回收率均符合方法学要求。根据接受者操作特征(ROC)曲线、Youden指数、执法成本和执法力度等综合考量,得出4种目标物的参考阈值为甲基苯丙胺 ≥ 0.1 ng/mg;苯丙胺 ≥ 0.025 ng/mg; 6-单乙酰吗啡 ≥ 0.05 ng/mg; 吗啡 ≥ 0.05 ng/mg。本实验建立的方法可快速、高效、准确地测定甲基苯丙胺、苯丙胺、6-单乙酰吗啡及吗啡的含量。本研究为公安系统今后制定涉毒人员毛发样品检测规范的检测阈值提供了参考。
    Abstract: A rapid determination of methamphetamine, amphetamine, 6-monoacetylmorphine, and morphine in hair samples by UPLC-MS/MS was established and optimized.The concentration of target compounds in the hair of drug abusers and drug laboratory technicians was investigated and the cut-off value was evaluated.After cleaned hair was extracted by grinding with methanol-water (7∶3) at 3 000 r/min for 100 s, the final solution after adjusting the volume to methanol-water (1∶1) was analyzed by UPLC-MS/MS.The analytes were gradient eluted on a Waters Acquity BEH C18 (2.1 mm × 100 mm, 1.7 μm) column with 5 mmol/L ammonium formate-0.1% formic acid aqueous solution and acetonitrile as mobile phase at a flow rate of 0.4 mL/min. The ESI+ ion source and multiple reaction monitoring (MRM) were used to select the qualitative and quantitative ion pairs of the four target compounds. All analytes showed good linearity (R2 ≥ 0.999 6) in the range of 0.01-5 ng/mg (except amphetamine in 0.01-4 ng/mg), limit of the quantitation was 0.01 ng/mg, and the limit of detection was 0.001-0.008 ng/mg.The accuracy, precision, matrix effect, and recovery all met the requirements of biological sample methodology.According to the comprehensive consideration of the receiver operating characteristic (ROC) curve, Youden index, law enforcement cost and intensity, the reference cut-off values were methamphetamine ≥ 0.1 ng/mg; amphetamine ≥ 0.025 ng/mg; 6-monoacetylmorphine ≥ 0.05 ng/mg; morphine ≥ 0.05 ng/mg.The method established in our research can quickly and accurately detect the contents of methamphetamine, amphetamine, 6-monoacetylmorphine, and morphine in hair.This study provides some reference for the public security system to make more rational cut-off values in the norm of drug-related personnel hair samples detection in the future.
  • 草珊瑚(Sarcandra glabra)为金粟兰科(Chloranthaceae)草珊瑚属植物,在我国主要分布于南部地区,具有清热凉血,活血消斑,祛风通络的功效,是用于治疗炎症性疾病、风湿关节痛的传统中药[1]。现代药理学研究表明,草珊瑚具有免疫调节[2]、抗炎[3]以及抗肿瘤[4]活性。近些年来,草珊瑚及其提取物在食品以及化妆品等行业的需求也在不断地增长[5]。本课题组围绕草珊瑚中的特征性成分进行了诸多探索[67]。乌药烷倍半萜及其聚合物以其独特的3/5/6环结构、多样的聚合方式以及良好的生物活性也被认为是草珊瑚中最有代表性的化合物[89]。目前对于草珊瑚的化学成分的研究主要集中于极性较小的萜类成分,对于草珊瑚提取物中的大极性成分,特别是苷类成分研究较少[10]

    为了阐明草珊瑚作为常用中药的物质基础,进一步深入研究其中的有效成分。本研究对新鲜草珊瑚叶醇提物乙酸乙酯萃取后水部位进行了系统的研究。从中分离鉴定了8个极性较大的萜苷类化合物和2个迷迭香酸衍生物,分别为sarcaglaboside C (1)、sarcaglaboside D (2)、byzantionoside B (3)、lauroside E (4)、(4Z)-4-[(3S)-3-(β-D-glucopyranosyloxy)butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one (5)、dihydrovomifoliol-O-β-D-glucopyranoside (6)、(+)-abscisyl-β-D-glucopyranoside (7)、9ξ-O-β-D-glucopyranosyloxy-5-megastigmen-4-one (8)、rosmarinic acid methyl ester (9)、methyl isorinate (10)。其中,化合物3~58~9均首次从草珊瑚中分离得到。

    草珊瑚地上部分(约51.5 kg)采自福建省三明市,由中国药科大学生药学教研室张勉教授鉴定为金粟兰科草珊瑚属草珊瑚[Sarcandra glabra (Thunb.) Nakai],凭证标本(202106)存放于中国药科大学中药学院天然药物化学教研室。

    1260/1100分析型高效液相色谱仪、G6520B Q-TOF质谱仪(美国安捷伦公司);制备型高效液相色谱仪、紫外光谱仪(日本岛津公司);AV-600型核磁共振仪(美国布鲁克公司);200~300目硅胶,GF254硅胶(青岛海洋化工有限公司);MCI树脂(三菱化学公司);RP-C18反相柱色谱填料(上海月旭科技公司);Sephadex LH-20(英国GE healthcare Bio-Sciences AB公司);氘代试剂(美国剑桥同位素实验室);所用试剂均为分析纯或色谱纯。

    新鲜的草珊瑚地上部分(51.5 kg),粉碎,用3倍量的85%乙醇回流提取3次,每次3 h。提取液减压浓缩后得到粗浸膏(1553 g)。取适量水使之混悬,依次用2倍量的乙酸乙酯进行萃取,分别得到水部位(731.2 g)和乙酸乙酯部位(545.3 g)。水部位分别经大孔树脂柱色谱粗分段,用乙醇-水(0︰1→1︰0)梯度洗脱,得到5个馏分(Fr. A-E)。对馏分Fr. B以及Fr. C采用硅胶柱色谱、MCI柱色谱、凝胶柱色谱、制备液相色谱等分离方法,共得到10个化合物。其中,在馏分Fr. B中分离得到化合物15~10,在馏分Fr. B中分离得到化合物2~4。化合物1~10 的结构式见图1

    Figure  1.  Chemical structures of compounds 1-10

    化合物1  白色无定形粉末,(+)-HR-ESI-MS m/z 433.1851 [M+Na]+。分子式为C21H30O8。其1H NMR谱图显示了1组葡萄糖基信号,2个甲基单峰信号;5个烯氢信号;1个连氧取代氢信号。13C NMR谱图显示1个酯羰基碳信号,3组碳碳双键信号,1个缩醛碳信号。结合以上信息分析该化合物为榄香烷倍半萜糖苷类化合物。具体的核磁数据如下:1H NMR (600 MHz, MeOD) δ: 5.83 (1H, m, H-1), 4.99 (1H, m, H-2α), 5.01 (1H, m, H-2β), 5.06 (1H, m, H-3α), 5.40 (1H, m, H-3β), 2.34 (1H, dd, J=12.2 Hz, 3.2 Hz, H-5), 2.81 (1H, dd, J=14.4 Hz, 4.2Hz, H-6α), 2.72 (1H, t, J=13.9 Hz, H-6β), 4.92 (1H, m, H-8), 1.36 (1H, t, J=12 Hz, H-9α), 2.14 (1H, dd, J =12.1 Hz, 6.1Hz, H-9β), 1.80 (1H, s, H3-13), 1.21 (1H, s, H3-14), 4.08 (1H, d, J=13 Hz, H-15α), 4.29 (1H, d, J=13 Hz, H-15β), 4.25 (1H, d, J=7.8 Hz, H-1′), 3.34 (1H, t, J=8.9 Hz, H-2′), 3.27 (1H, d, J=8.7 Hz, H-3′), 3.24 (1H, ddd, J=9.6Hz, 5.7Hz, 2.2Hz, H-4′), 3.20 (1H, dd, J=9.2 Hz, 7.9 Hz, H-5′), 3.66 (1H, dd, J=11.9 Hz, 5.5 Hz, H-6′α), 3.86 (1H, dd, J=11.8 Hz, 2.3 Hz, H-6′β); 13C NMR (150 MHz, MeOD) δ: 146.7 (C-1), 111.2 (C-2), 119.0 (C-3), 145.9 (C-4), 55.8 (C-5), 27.9 (C-6), 163.8 (C-7), 78.4 (C-8), 45.6 (C-9), 40.6 (C-10), 119.2 (C-11), 176.0 (C-12), 6.7 (C-13), 15.3 (C-14), 73.3 (C-15), 102.9 (C-1′), 73.8 (C-2′), 76.8 (C-3′), 70.3 (C-4′), 76.6 (C-5′), 61.4 (C-6′)。该化合物的波谱数据与文献[11]报道的基本一致,故鉴定化合物1为sarcaglaboside C。

    化合物2  白色无定形粉末,(+)-HR-ESI-MS m/z 565.2284 [M+Na]+。分子式为C26H38O121H NMR (600 MHz, MeOD) δ: 5.84 (1H, m, H-1), 5.02 (1H, m, H-2α), 5.02 (1H, m, H-2β), 5.02 (1H, m, H-3α), 5.42 (1H, m, H-3β), 2.73 (1H, t, J=13.9 Hz, H-5), 2.86 (1H, dd, J=14.4 Hz, 4.1 Hz, H-6α), 2.34 (1H, dd, J=13.4 Hz, 4 Hz, H-6β), 4.92 (1H, m, H-8), 1.38 (1H, t, J=12 Hz, H-9α), 2.16 (1H, dt, J=13.5 Hz, 6.7 Hz, H-9β), 1.82 (1H, s, H3-13), 1.23 (1H, s, H3-14), 4.10 (1H, d, J=12.9 Hz, H-15α), 4.26 (1H, m, H-15β), 4.27 (1H, m, H-1′), 3.21 (1H, m, H-2′), 3.37 (1H, m, H-3′), 3.27 (1H, t, J=9.3 Hz, H-4′), 3.37 (1H, m, H-5′), 3.40 (1H, m, H-6′α), 3,96 (1H, m, H-6′β), 4.93 (1H, m, H-1′′), 3.78 (1H, d, J=9.5 Hz, H-2′′), 3.61 (1H, dd, J=11.3 Hz, 6.5 Hz, H-4′′α), 3.91 (1H, d, J=2.5 Hz, H-4′′β), 3.59 (1H, br.s, H-5′′α), 3.59 (1H, br.s, H-5′′β); 13C NMR (150 MHz, MeOD) δ: 147.3 (C-1), 111.8 (C-2), 114.7 (C-3), 146.3 (C-4), 54.4 (C-5), 28.4 (C-6), 164.5 (C-7), 79.7 (C-8), 46.2 (C-9), 41.2 (C-10), 119.7 (C-11), 176.5 (C-12), 7.3 (C-13), 15.9 (C-14), 74.3 (C-15), 103.5 (C-1′), 74.1 (C-2′), 77.2 (C-3′), 70.9 (C-4′), 76.2 (C-5′), 67.9 (C-6′), 110.1 (C-1′′), 77.2 (C-2′′), 79.0 (C-3′′), 74.1 (C-4′′), 64.6 (C-5′′)。该化合物的波谱数据与文献[11]报道的基本一致,故鉴定化合物2为sarcaglaboside D。

    化合物3  黄色油状物,(+)-HR-ESI-MS m/z 395.2214 [M+Na]+。分子式为C19H32O7。其1H NMR谱图显示了1组葡萄糖基信号,3个甲基单峰信号;1个甲基双峰信号,1个烯氢信号,1个连氧取代氢信号。13C NMR谱图显示1个酮羰基碳信号,1组碳碳双键信号,1个缩醛碳信号。结合以上信息分析该化合物为紫罗兰酮型倍半萜糖苷类化合物。具体的核磁数据如下:1H NMR (600 MHz, MeOD) δ: 1.98 (1H, m, H-2α), 2.46 (1H, d, J=17.4 Hz, H-2β), 5.81 (1H, s, H-4), 1.98 (1H, m, H-6), 1.50 (1H, ddd, J=19.2 Hz, 9.6 Hz, 4.8 Hz, H-7α), 1.98 (1H, m, H-7β), 1.65 (1H, m, H-8α), 1.65 (1H, m, H-8β), 3.91 (1H, m, H-9), 1.19 (1H, d, J=6.2 Hz, H-10), 1.00 (1H, s, H3-11), 1.09 (1H, s, H3-12), 2.05 (1H, s, H3-13), 4.32 (1H, t, J=9.5 Hz, H-1′), 3.14 (1H, t, J=8.5 Hz, H-2′), 3.64 (1H, dt, J=15.1 Hz, 7 Hz, H-3′), 3.35 (1H, t, J=8.4 Hz, H-4′), 3.27 (1H, m, H-5′), 3.89 (1H, m, H-6′α), 3.83 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 46.7 (C-1), 36.6 (C-2), 201.0 (C-3), 124.0 (C-4), 168.7 (C-5), 51.0 (C-6), 36.4 (C-7), 35.9 (C-8), 70.5 (C-9), 23.6 (C-10), 25.4 (C-11), 26.1 (C-12), 18.5 (C-13), 100.7 (C-1′), 76.8 (C-2′), 73.8 (C-3′), 76.5 (C-4′), 74.2 (C-5′), 61.6 (C-6′)。该化合物的波谱数据与文献[12]报道的基本一致,故鉴定化合物3为byzantionoside B。

    化合物4  黄色油状物,(+)-HR-ESI-MS m/z 411.2116 [M+Na]+。分子式为C19H32O81H NMR (600 MHz, MeOD) δ: 2.05 (1H, m, H-2α), 2.46 (1H, d, J=17.4 Hz, H-2β), 5.81 (1H, s, H-4), 1.98 (1H, m, H-6), 1.50 (1H, m, H-7), 1.65 (1H, m, H-8α), 1.65 (1H, m, H-8β), 3.87 (1H, m, H-9), 1.19 (1H, d, J=6.2 Hz, H-10), 1.00 (1H, s, H3-11), 1.09 (1H, s, H3-12), 4.19 (1H, dd, J=15.6 Hz, 2 Hz, H-13), 4.36 (1H, dd, J=15.6 Hz, 2 Hz, H-13), 4.32 (1H, t, J=9.5 Hz, H-1′), 3.14 (1H, t, J=5.8 Hz, H-2′), 3.27 (1H, m, H-3′), 3.27 (1H, m, H-4′), 3.35 (1H, m, H-5′), 3.64 (1H, dp, J=15.1 Hz, 7 Hz, 6.4 Hz, H-6′α), 3.87 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 36.4 (C-1), 51.0 (C-2), 201.0 (C-3), 124.0 (C-4), 168.7 (C-5), 46.7 (C-6), 23.6 (C-7), 36.6 (C-8), 74.2 (C-9), 18.5 (C-10), 25.4 (C-11), 26.1 (C-12), 74.2 (C-13), 100.7 (C-1′), 73.8 (C-2′), 76.8 (C-3′), 70.5 (C-4′), 76.5 (C-5′), 61.5 (C-6′)。 该化合物的波谱数据与文献[13]报道的基本一致,故鉴定化合物4为lauroside E。

    化合物5  黄色油状物,(+)-HR-ESI-MS m/z 393.2136 [M+Na]+。分子式为C19H32O71H NMR (600 MHz, MeOD) δ: 2.66 (1H, dd, J=17.3 Hz, 11.6 Hz, 6.7 Hz, H-2α), 2.66 (1H, dd, J=17.3 Hz, 11.6 Hz, 6.7 Hz, H-2β), 5.86 (1H, s, H-4), 6.34 (1H, d, J=6.4 Hz, H-7), 2.31 (1H, d, J=8.6 Hz, H-8α), 2.31 (1H, d, J=8.6 Hz, H-8β), 4.35 (1H, d, J=7.8 Hz, H-9), 1.28 (1H, d, J=2.2 Hz, H-10), 1.25 (1H, s, H3-11), 1.25 (1H, s, H3-12), 2.11 (1H, s, H3-13), 4.36 (1H, m, H-1′), 4.03 (1H, m, H-2′), 3.26 (1H, dt, J=11.7 Hz, 6.5 Hz, H-3′), 3.15 (1H, m, H-4′), 3.35 (1H, m, H-5′), 3.84 (1H, m, H-6′α), 3.98 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 53.2 (C-1), 37.8 (C-2), 200.8 (C-3), 124.0 (C-4), 157.9 (C-5), 141.7 (C-6), 134.2 (C-7), 37.2 (C-8), 76.7 (C-9), 21.3 (C-10), 27.7 (C-11), 27.7 (C-12), 18.7 (C-13), 101.1 (C-1′), 73.7 (C-2′), 76.6 (C-3′), 70.5 (C-4′), 74.3 (C-5′), 61.7 (C-6′)。该化合物的波谱数据与文献[14]报道的基本一致,故鉴定化合物5为(4Z)-4-[(3S)-3-(β-D-glucopyranosyloxy)butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one。

    化合物6  黄色油状物,(+)-HR-ESI-MS m/z 411.2116 [M+Na]+。分子式为C19H32O81H NMR (600 MHz, MeOD) δ: 2.61 (1H, d, J=12 Hz, H-2α), 2.15 (1H, d, J=12 Hz, H-2β), 5.83 (1H, s, H-4), 2.15 (1H, d, J=12 Hz, H-7α), 1.82 (1H, m, H-7β), 1.79 (1H, m, H-8α), 1.49 (1H, tt, J=12.9 Hz, 4.5 Hz, H-8β), 4.07 (1H, m, H-9), 1.17 (1H, d, J=6.2 Hz, H-10), 1.02 (1H, s, H3-11), 1.10 (1H, s, H3-12), 2.04 (1H, s, H3-13), 4.36 (1H, m, H-1′), 3.13 (1H, dd, J=9.2 Hz, 7.8 Hz, H-2′), 3.81 (1H, q, J=6 Hz, H-3′), 3.26 (1H, m, H-4′), 3.26 (1H, m, H-5′), 3.85 (1H, dd, J=11.6 Hz, 5.3 Hz, H-6′α), 3.34 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 42.0 (C-1), 50.2 (C-2), 200.2 (C-3), 125.8 (C-4), 170.9 (C-5), 78.4 (C-6), 34.0 (C-7), 32.7 (C-8), 75.3 (C-9), 20.9 (C-10), 23.8 (C-11), 23.3 (C-12), 19.2 (C-13), 101.4 (C-1′), 74.3 (C-2′), 77.0 (C-3′), 70.9 (C-4′), 77.3 (C-5′), 62.0 (C-6′)。该化合物的波谱数据与文献[15]报道的基本一致,故鉴定化合物6为dihydrovomifoliol-O-β-D-glucopyranoside。

    化合物7  黄色油状物,(+)-HR-ESI-MS m/z 459.1917 [M+Na]+。分子式为C21H30O91H NMR (600 MHz, MeOD) δ: 2.21 (1H, d, J=16.9 Hz, H-2α), 2.56 (1H, d, J=16.9 Hz, H-2β), 5.96 (1H, s, H-4), 6.35 (1H, d, J=16.1 Hz, H-7), 7.83 (1H, d, J=16.1 Hz, H-8), 5.84 (1H, s, H-10), 1.09 (1H, s, H3-12), 2.04 (1H, s, H3-13), 2.04 (1H, br.s, H3-14), 1.95 (1H, br.s, H3-15), 5.52 (1H, d, J=8.2 Hz, H-1′), 3.78 (1H, q, J=6.1 Hz, H-2′), 3.27 (1H, m, H-3′), 3.43 (1H, m, H-4′), 3.43 (1H, m, H-5′), 3.86 (1H, dd, J=12.1 Hz, 2.1 Hz, H-6′α), 3.71 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 41.5 (C-1), 49.2 (C-2), 199.5 (C-3), 126.3 (C-4), 152.2 (C-5), 77.4 (C-6), 137.9 (C-7), 127.8 (C-8), 128.5 (C-9), 116.7 (C-10), 164.4 (C-11), 18.1 (C-12), 18.1 (C-13), 22.2 (C-14), 19.9 (C-15), 94.0 (C-1′), 69.7 (C-2′), 76.7 (C-3′), 72.6 (C-4′), 67.8 (C-5′), 61.0 (C-6′)。该化合物的波谱数据与文献[16]报道的基本一致,故鉴定化合物7为 (+)-abscisyl-β-D-glucopyranoside。

    化合物8  黄色油状物,(+)-HR-ESI-MS m/z 395.2214 [M+Na]+。分子式为C19H32O71H NMR (600 MHz, MeOD) δ: 1.81 (1H, m, H-2α), 1.81 (1H, m, H-2β), 2.44 (1H, dd, J=7.5 Hz, 4.2 Hz, H-3α), 2.44 (1H, dd, J=7.5 Hz, 4.2 Hz, H-3β), 2.54 (1H, m, H-7α), 2.31 (1H, m, H-7β), 1.68 (1H, m, H-8α), 1.68 (1H, m, H-8β), 3.96 (1H, tt, J=7 Hz, 3.4 Hz, H-9), 1.76 (1H, s, H-10), 1.20 (1H, s, H3-11), 1.20 (1H, s, H3-12), 1.23 (1H, d, J=6.2 Hz, H-13), 4.35 (1H, d, J=7 Hz, H-1′), 3.16 (1H, m, H-2′), 3.28 (1H, m, H-3′), 3.31 (1H, m, H-4′), 3.28 (1H, m, H-5′), 3.88 (1H, ddd, J=11.4 Hz, 7 Hz, 1.4 Hz, H-6′α), 3.67 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 36.7 (C-1), 37.6 (C-2), 36.4 (C-3), 200.7 (C-4), 132.7 (C-5), 167.9 (C-6), 27.1 (C-7), 34.2 (C-8), 71.0 (C-9), 10.9 (C-10), 26.3 (C-11), 26.3 (C-12), 18.9 (C-13), 101.4 (C-1′), 74.9 (C-2′), 77.0 (C-3′), 74.3 (C-4′), 77.4 (C-5′), 62.1 (C-6′)。该化合物的波谱数据与文献[17]报道的基本一致,故鉴定化合物8为9ξ-O-β-D-glucopyranosyloxy-5-megastigmen-4-one。

    化合物9  白色方晶,(+)-HR-ESI-MS m/z 397.3121 [M+Na]+。分子式为C19H18O81H NMR (600 MHz, MeOD) δ: 7.05 (1H, d, J=2.1 Hz, H-2), 6.96 (1H, dd, J=8.2 Hz, 2 Hz, H-5), 6.78 (1H, d, J=8.1 Hz, H-6), 7.55 (1H, d, J=15.9 Hz, H-7), 6.26 (1H, d, J=15.9 Hz, H-8), 6.73 (2H, m, H-2′, H-6′), 6.57 (1H, dd, J=8.1 Hz, 2 Hz, H-5′), 3.04 (1H, qd, J=14.3 Hz, 6.4 Hz, H2-7′), 5.19 (1H, dd, J=7.7 Hz, 5.1 Hz, H-8′), 3.70 (1H, s, H3-OCH3); 13C NMR (150 MHz, MeOD) δ: 126.1 (C-1), 114.9 (C-2), 148.6 (C-3), 146.6 (C-4), 121.8 (C-5), 116.1 (C-6), 144.8 (C-7), 112.7 (C-8), 166.9 (C-9), 127.3 (C-1′), 115.1 (C-2′), 145.5 (C-3′), 144.8 (C-4′), 113.8 (C-5′), 120.4 (C-6′), 36.5 (C-7′), 73.3 (C-8′), 170.8 (C-9′), 51.3 (C-OCH3)。该化合物的波谱数据与文献[18]报道的基本一致,故鉴定化合物9为rosmarinic acid methyl ester。

    化合物10  白色方晶,(+)-HR-ESI-MS m/z 381.1117 [M+Na]+。分子式为C19H18O71H NMR (600 MHz, MeOD) δ: 7.06 (1H, d, J=2.1 Hz, H-2), 6.96 (1H, dd, J=8.2 Hz, 2 Hz, H-5), 6.81 (1H, d, J=8.1 Hz, H-6), 7.56 (1H, d, J=15.9 Hz, H-7), 6.27 (1H, d, J=15.9 Hz, H-8), 7.10 (2H, m, H-2′, H-6′), 6.75 (2H, dd, J=8.1 Hz, 2 Hz, H-3′, H-5′), 3.11 (1H, m, H2-7′), 5.22 (1H, dd, J=7.7 Hz, 5.1 Hz, H-8′), 3.71 (1H, s, H3-OCH3); 13C NMR (150 MHz, MeOD) δ: 126.2 (C-1), 113.9 (C-2), 148.6 (C-3), 146.6 (C-4), 121.8 (C-5), 112.7 (C-6), 156.0 (C-7), 122.3 (C-8), 166.9 (C-9), 130.1 (C-1′), 115.1 (C-2′, C-6′), 114.9 (C-3′, C-5′), 145.4 (C-4′), 36.3 (C-7′), 73.3 (C-8′), 170.8 (C-9′), 51.3 (C-OCH3)。该化合物的波谱数据与文献[19]报道的基本一致,故鉴定化合物10为methyl isorinate。

    草珊瑚中含有结构丰富的化合物,包括酚酸类,以乌药烷倍半萜及其多聚体组成的萜类,黄酮类以及香豆素类。本研究以草珊瑚地上部分的水萃取层为研究对象,系统地研究了其中的化学成分。从中发现了2个榄香烷糖苷类化合物,6个紫罗兰酮糖苷类化合物以及2个酚酸类化合物。上述化合物都具有较大的极性。其中,化合物3~58~9首次从草珊瑚中分离得到。这些化合物的发现有助于丰富草珊瑚植物中化合物的类型,有利于对草珊瑚作为常用中药含有的有效成分的理解,并为后续药理活性研究提供了重要的物质基础。基于草珊瑚用于治疗炎症性疾病的经验,后续可以对分离得到的上述化合物进行抗炎活性研究。

  • [1] . Chem Reag(化学试剂),2020,42(3):280-284.
    [2] Meng L,Zhang WW,Zhu BL,et al. Hollow fiber liquid-phase microextraction for the determination of drugs of abuse in urine and blood samples by gas chromatography-triple quadrupole mass spectrometry[J]. J Anal Sci(分析科学学报),2016,32(3):366-370.
    [3] Liu H,Li HY,Gong Y,et al. Detection of ketamine,MDMA and their main metabolites in urine samples by SPME-HPLC-MS[J]. J China Pharm Univ(中国药科大学学报),2019,50(2):188-192.
    [4] Shi XL,Qiao HW,Wu JM,et al. Determination of dezocine and pethidine in human hair by UPLC-MS/MS[J]. J China Pharm Univ(中国药科大学学报),2022,53(1):74-78.
    [5] Kintz P,Villain M,Cirimele V. Hair analysis for drug detection[J]. Ther Drug Monit,2006,28(3):442-446.
    [6] Xiang P,Shen M,Drummer OH. Review:drug concentrations in hair and their relevance in drug facilitated crimes[J]. J Forensic Leg Med,2015,36:126-135.
    [7] Kuwayama K,Miyaguchi H,Iwata YT,et al. Strong evidence of drug-facilitated crimes by hair analysis using LC-MS/MS after micro-segmentation[J]. Forensic Toxicol,2019,37(2):480-487.
    [8] Kintz P. Hair analysis in forensic toxicology[J]. Wires Forensic Sci,2019,1(1):e1196.doi:10.1002/wfs2.1196.
    [9] Franz T,Skopp G,Mu?hoff F. Findings of illicit drugs in hair of children at different ages[J]. Int J Legal Med,2021,135(2):465-471.
    [10] Cooper GAA,Kronstrand R,Kintz P. Society of Hair Testing guidelines for drug testing in hair[J]. Forensic Sci Int,2012,218(1/2/3):20-24.
    [11] Romano G,Barbera N,Spadaro G,et al. Determination of drugs of abuse in hair:evaluation of external heroin contamination and risk of false positives[J]. Forensic Sci Int,2003,131(2/3):98-102.
    [12] Kintz P,Mangin P. What constitutes a positive result in hair analysis:proposal for the establishment of cut-off values[J]. Forensic Sci Int,1995,70(1/2/3):3-11.
    [13] Wu JM,Qiao HW,Liu WJ,et al. Determination of 36 fentanyl analogs in human hair by HPLC-MS/MS[J]. Chin J Forensic Sci(中国司法鉴定),2021(1):48-53.
    [14] Li C,Wang JF,Wang YY. Advances in pretreatment techniques for hair samples[J]. Chin J Pharm Anal(药物分析杂志),2020,40(3):401-412.
    [15] Ball DJ,Norwood DL,Stults CLM,et al. Leachables and Extractables HandbookSafety EvaluationQualificationand Best Practices Applied to Inhalation Drug Products[M]. Hoboken,NJ,USA:John Wiley & Sons,Inc.,2012.
    [16] Leung KW,Wong ZCF,Ho JYM,et al. Determination of hair ketamine cut-off value from Hong Kong ketamine users by LC-MS/MS analysis[J]. Forensic Sci Int,2016,259:53-58.
    [17] Xiang P,Sun YY,Shen BH,et al. Investigation of heroin,6-acetylmorphine,morphine,codeine,and acetylcodeinein hair from heroin abusers[J]. Chin J Forensic Sci(中国司法鉴定),2013(1):19-29.
    [18] Zhuo Y,Wang X,Wu JJ,et al. Simultaneous quantitative determination of amphetamines,opiates,ketamine,cocaine and metabolites in human hair:application to forensic cases of drug abuse[J]. J Forensic Sci,2020,65(2):563-569.
    [19] Lee S,Cordero R,Paterson S. Distribution of 6-monoacetylmorphine and morphine in head and pubic hair from heroin-related deaths[J]. Forensic Sci Int,2009,183(1/2/3):74-77.
计量
  • 文章访问数:  215
  • HTML全文浏览量:  26
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-09-08
  • 刊出日期:  2022-10-24

目录

/

返回文章
返回
x 关闭 永久关闭