• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

4种酰胺类合成大麻素在人肝微粒体中Ⅰ相代谢规律研究

刘生凤, 张岚, 刘书丞, 侯臣之, 徐鹏, 狄斌

刘生凤, 张岚, 刘书丞, 侯臣之, 徐鹏, 狄斌. 4种酰胺类合成大麻素在人肝微粒体中Ⅰ相代谢规律研究[J]. 中国药科大学学报, 2022, 53(5): 577-590. DOI: 10.11665/j.issn.1000-5048.20220508
引用本文: 刘生凤, 张岚, 刘书丞, 侯臣之, 徐鹏, 狄斌. 4种酰胺类合成大麻素在人肝微粒体中Ⅰ相代谢规律研究[J]. 中国药科大学学报, 2022, 53(5): 577-590. DOI: 10.11665/j.issn.1000-5048.20220508
LIU Shengfeng, ZHANG Lan, LIU Shucheng, HOU Chenzhi, XU Peng, DI Bin. Phase I metabolism of four amide synthetic cannabinoids in human liver microsomes[J]. Journal of China Pharmaceutical University, 2022, 53(5): 577-590. DOI: 10.11665/j.issn.1000-5048.20220508
Citation: LIU Shengfeng, ZHANG Lan, LIU Shucheng, HOU Chenzhi, XU Peng, DI Bin. Phase I metabolism of four amide synthetic cannabinoids in human liver microsomes[J]. Journal of China Pharmaceutical University, 2022, 53(5): 577-590. DOI: 10.11665/j.issn.1000-5048.20220508

4种酰胺类合成大麻素在人肝微粒体中Ⅰ相代谢规律研究

Phase I metabolism of four amide synthetic cannabinoids in human liver microsomes

  • 摘要: 研究4种近来滥用的酰胺类合成大麻素ADB-4en-PINACA、4CN-CUMYL-BUTINACA、5F-EMB-PICA和4F-MDMB-BUTICA的体外人肝微粒体代谢规律。取人肝微粒体,加合成大麻素使成1 mg/mL,模拟人体代谢过程孵育10 min、60 min或3 h,用液相色谱-四极杆-飞行时间串联质谱(LC-QTOF-MS)分析技术检测并鉴定代谢产物的结构,探索代谢途径。结果显示,5F-EMB-PICA、4F-MDMB-BUTICA、ADB-4en-PINACA和4CN-CUMYL-BUTINACA存在羟基化、羧基化、N-脱烷基和酯水解等27种Ⅰ相代谢途径,其中主要的Ⅰ相代谢途径为酯水解、双键氧化成邻二醇、氧化脱氟羧基化、单羟基化(烷基侧链或吲哚/吲唑环)和N-脱烷基。本研究可为司法鉴定4种酰胺类合成大麻素的滥用和污水毒情评估提供潜在的检测标志物。
    Abstract: This study was performed to determine the metabolic profile of four amide synthetic cannabinoids that recently abused, i.e., ADB-4en-PINACA, 4CN-CUMYL-BUTINACA, 5F-EMB-PICA and 4F-MDMB-BUTICA, in human liver microsomes (HLMs). The four amide synthetic cannabinoids were added to the microsomal incubation model, being incubated for 10 min, 60 min or 3 h to simulate human hepatic metabolism.Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) analytical instrument was employed to determine and speculate the structure of phase I metabolites and their possible metabolic pathways.The results showed that there were 27 phase I metabolic pathways for the four amide synthetic cannabinoids, including hydroxylation, carboxylation, N-dealkylation and ester hydrolysis, with the main phase I metabolic pathways of ester hydrolysis, dihydrodiol (pentenyl tail), oxidative defluorination to carboxylic acid, monohydroxylation (alkyl side chain or indole/indazole ring) and N-dealkylation.The results of this study may provide potential detection markers for forensic identification and sewage abuse assessment of the four amide synthetic cannabinoids.
  • [1] . Drug Test Anal,2022,14(2):307-316.
    [2] Yang F,Dong LB,Cai WJ. Detection and analysis of new synthetic cannabinoid in electronic cigarette oil[J]. Chin J Forensic Med(中国法医学杂志),2021,36 (5):481-482.
    [3] Li YY,Ding XQ,Han P. Identifying synthetic Cannabis 5F-ADBICA and 5F-MDMB-PICA in electronic cigarette oil with GC-MS[J]. Guangdong Chem Ind(广东化工),2020(23):126-127,140.
    [4] Thornton MD,Baum CR. Bath salts and other emerging toxins[J]. Pediatr Emerg Care,2014,30(1):47-52.
    [5] Grigg J,Manning V,Arunogiri S,et al. Synthetic cannabinoid use disorder:an update for general psychiatrists[J]. Australas Psychiatry,2019,27(3):279-283.
    [6] Waugh J,Najafi J,Hawkins L,et al. Epidemiology and clinical features of toxicity following recreational use of synthetic cannabinoid receptor agonists:a report from the United Kingdom National Poisons Information Service[J]. Clin Toxicol,2016,54(6):512-518.
    [7] Darke S,Banister S,Farrell M,et al. ‘Synthetic cannabis’:a dangerous misnomer[J]. Int J Drug Policy,2021,98:103396.
    [8] Brents LK,Prather PL. The K2/Spice phenomenon:emergence,identification,legislation and metabolic characterization of synthetic cannabinoids in herbal incense products[J]. Drug MeTable Rev,2014,46(1):72-85.
    [9] Li C,Wang JF,Xu DQ,et al. Inspection of phase I metabolites of synthetic cannabinoid JWH-073 in human liver microsomes by ultra high performance liquid chromatography-high resolution mass spectrometry[J]. Phys Test Chem Anal (理化检验 化学分册),2019,55 (8):869-875.
    [10] Presley BC,Castaneto MS,Logan BK,et al. Metabolic profiling of synthetic cannabinoid 5F-ADB and identification of metabolites in authentic human blood samples via human liver microsome incubation and ultra-high-performance liquid chromatography/high-resolution mass spectrometry[J]. Rapid Commun Mass Spectrom,2020,34(22):e8908.
    [11] Watanabe S,Vikingsson S,?strand A,et al. Biotransformation of the new synthetic cannabinoid with an alkene,MDMB-4en-PINACA,by human hepatocytes,human liver microsomes,and human urine and blood[J]. AAPS J,2020,22(1):13.
    [12] Sia CH,Wang ZT,Goh EML,et al. Urinary metabolite biomarkers for the detection of synthetic cannabinoid ADB-BUTINACA abuse[J]. Clin Chem,2021,67(11):1534-1544.
    [13] Norman C,McKirdy B,Walker G,et al. Large-scale evaluation of ion mobility spectrometry for the rapid detection of synthetic cannabinoid receptor agonists in infused papers in prisons[J]. Drug Test Anal,2021,13(3):644-663.
    [14] Li JR,Wang JF,Zhang WF,et al. Metabolic markers of the synthetic cannabinoid 5F-EMB-PICA in zebrafish[J]. Chin J Anal Lab (分析试验室):1-11.
    [15] Kronstrand R,Norman C,Vikingsson S,et al. The metabolism of the synthetic cannabinoids ADB-BUTINACA and ADB-4en-PINACA and their detection in forensic toxicology casework and infused papers seized in prisons[J]. Drug Test Anal,2022,14(4):634-652.
    [16] Wang KD,Yuan XL,Zhang YR,et al. Detection of 4F-MDMB-BICA,a new synthetic cannabinoid psychoactive substance[J]. Chin J Forensic Med(中国法医学杂志),2021,36(1):25-29.
    [17] Yue LN,Xiang P,Shen BH,et al. Metabolism of 4F-MDMB-BICA in zebrafish by liquid chromatography-high resolution mass spectrometry[J]. Drug Test Anal,2021,13(6):1223-1229.
    [18] Ar?kan ?lmez N,Kapucu H,?all? Altun N,et al. Identification of the synthetic cannabinoid N-(2-phenyl-propan-2-yl)-1-(4-cyanobutyl)-1H-indazole-3-carboxamide (CUMYL-4CN-BINACA) in a herbal mixture product[J].Forensic Toxicol,2018,36(1):192-199.
    [19] Kevin RC,Anderson L,McGregor IS,et al. CUMYL-4CN-BINACA is an efficacious and potent pro-convulsant synthetic cannabinoid receptor agonist[J]. Front Pharmacol,2019,10:595.
    [20] ?ztürk YE,Yeter O,?ztürk S,et al. Detection of metabolites of the new synthetic cannabinoid CUMYL-4CN-BINACA in authentic urine samples and human liver microsomes using high-resolution mass spectrometry[J]. Drug Test Anal,2018,10(3):449-459.
    [21] ?strand A,Vikingsson S,Lindstedt D,et al. Metabolism study for CUMYL-4CN-BINACA in human hepatocytes and authentic urine specimens:free cyanide is formed during the main metabolic pathway[J]. Drug Test Anal,2018,10(8):1270-1279.
  • 期刊类型引用(9)

    1. 戴建英. 在体单向肠灌流法研究知母提取物肠吸收特性. 湖北医药学院学报. 2024(05): 518-523 . 百度学术
    2. 黄秋妹,石茗,王珍,倪明龙,阙慧卿. 吴茱萸碱制剂的研究进展. 广东化工. 2023(10): 66-68+79 . 百度学术
    3. 黄秋妹,阙慧卿,李唯,钱丽萍,刘经亮. 吴茱萸碱脂质体的制备工艺研究. 医学信息. 2023(19): 19-22 . 百度学术
    4. 张佩琛,方栋,郝海军. 吴茱萸碱胃漂浮片制备及其对家兔胃黏膜损伤的保护作用. 中成药. 2023(11): 3527-3533 . 百度学术
    5. 董丹丹,焦红军,郝海军,范明松. 吴茱萸碱纳米结构脂质载体处方优化和SD大鼠体内口服药动学研究. 中草药. 2022(01): 60-70 . 百度学术
    6. 宋朔尧,杨贵前,陶玲,沈祥春,张环,李和蓉,王守莉,石惠云,刘文. 吴茱萸碱磷脂复合物自乳化药物递送系统的制备、表征及胃黏膜渗透性研究. 中国药房. 2022(09): 1056-1061 . 百度学术
    7. 赵梦,刘卓雅,于嘉敏,王芮,范铭婕,乔宏志. 生姜细胞外囊泡样纳米粒载吴茱萸碱的处方工艺及体外释药研究. 南京中医药大学学报. 2022(06): 527-533 . 百度学术
    8. 决利利,梁婧,李晓婷,王柯静,周珊珊,刘艳菊. 松果菊苷固体脂质纳米粒的制备及其在体肠吸收特性、体内药动学研究. 中成药. 2022(08): 2429-2434 . 百度学术
    9. 陈云,曾梅,徐靖鑫,胡娟,张景勍. 二甲双胍-白藜芦醇复合物油包水型纳米乳在体肠吸收及其药代动力学研究. 中国药科大学学报. 2021(03): 325-331 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  237
  • HTML全文浏览量:  7
  • PDF下载量:  528
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-09-13
  • 刊出日期:  2022-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭