• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

一株诺西肽产生菌的发掘及发酵条件优化

孙启航, 徐允聪, 吴羚锐, 容佳乐, 王彦文, 曹玉丹, 罗晨, 吴旭日

孙启航, 徐允聪, 吴羚锐, 容佳乐, 王彦文, 曹玉丹, 罗晨, 吴旭日. 一株诺西肽产生菌的发掘及发酵条件优化[J]. 中国药科大学学报, 2022, 53(6): 725-733. DOI: 10.11665/j.issn.1000-5048.20220612
引用本文: 孙启航, 徐允聪, 吴羚锐, 容佳乐, 王彦文, 曹玉丹, 罗晨, 吴旭日. 一株诺西肽产生菌的发掘及发酵条件优化[J]. 中国药科大学学报, 2022, 53(6): 725-733. DOI: 10.11665/j.issn.1000-5048.20220612
SUN Qihang, XU Yuncong, WU Lingrui, RONG Jiale, WANG Yanwen, CAO Yudan, LUO Chen, WU Xuri. Discovery of a new nosiheptide-producing strain and its fermentation optimization for nosiheptide production[J]. Journal of China Pharmaceutical University, 2022, 53(6): 725-733. DOI: 10.11665/j.issn.1000-5048.20220612
Citation: SUN Qihang, XU Yuncong, WU Lingrui, RONG Jiale, WANG Yanwen, CAO Yudan, LUO Chen, WU Xuri. Discovery of a new nosiheptide-producing strain and its fermentation optimization for nosiheptide production[J]. Journal of China Pharmaceutical University, 2022, 53(6): 725-733. DOI: 10.11665/j.issn.1000-5048.20220612

一株诺西肽产生菌的发掘及发酵条件优化

基金项目: 国家自然科学基金资助项目(No. 81973214)

Discovery of a new nosiheptide-producing strain and its fermentation optimization for nosiheptide production

Funds: This study was supported by the National Natural Science Foundation of China (No.81973214)
  • 摘要: 诺西肽是一种典型的硫肽类抗菌化合物,对多种革兰氏阳性耐药菌具有良好的抗菌活性。尽管水溶性低、体内活性差和结构类似物多等限制了诺西肽的临床应用,但糖基化类似物有望成为解决诺西肽成药难题的方式之一。基于诺西肽的生物合成基因簇信息,利用基因组数据挖掘方法定位了Actinoalloteichus sp.AHMU CJ021菌株,该菌基因组中存在一个由诺西肽合成模块和糖基化模块组成的全新基因簇。但是,在尝试单菌多次级代谢产物策略(OSMAC)和引入调控蛋白NocP等方法后,Actinoalloteichus sp. AHMU CJ021仍无法生物合成糖基化诺西肽,仅能产生结构类似物较少的诺西肽。在此基础上,针对诺西肽的生物合成,采用响应面法优化了Actinoalloteichus sp. AHMU CJ021的发酵条件,使诺西肽合成效价提高了近6倍,达到58.73 mg/L,且极少产生结构类似物。本研究通过基因组挖掘和发酵条件优化,发现了一株适合工业化生产高质量诺西肽的候选菌株,为诺西肽结构类似物的研究提供了基础。
    Abstract: Nosiheptide is a typical thiopeptide antibiotic displaying potent activity toward various drug-resistant strains of Gram-positive pathogens.Although nosiheptide lacks in vivo activity, and good water-solubility with a series of uncontrollable analogues, which may limit its clinical application, glycosylated analogues may overcome problem of low activity and may improve its druggability.In search of novel glycosylated nosiheptide producers, we applied a genome mining strategy that identified Actinoalloteichus sp.AHMU CJ021 that contains all genes required.However, despite the presence of a predicted glycosyltransferase, glycosylated derivatives of nosiheptide were not detected, after following one strain many compounds (OSMAC) strategy and heterologous expression of a regulatory protein NocP.Nevertheless, nosiheptide produced by this strain was remarkably pure, and further experiments were conducted to improve its production by optimization of the culture medium.Under optimal conditions, 58.73 mg/L nosiheptide was produced, representing an almost 6-fold improvement compared to the original fermentation medium.Therefore, we consider Actinoalloteichus sp.AHMU CJ021 a suitable potential candidate for industrial production of nosiheptide, which provides the basis for solving the problem of nosiheptide structural analogues.
  • [1] . Nature,2020,582(7811):294-297.
    [2] Culp EJ,Waglechner N,Wang WL,et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling[J]. Nature,2020,578(7796):582-587.
    [3] Hutchings MI,Truman AW,Wilkinson B. Antibiotics:past,present and future[J]. Curr Opin Microbiol,2019,51:72-80.
    [4] Furusawa C,Horinouchi T,Maeda T. Toward prediction and control of antibiotic-resistance evolution[J]. Curr Opin Biotechnol,2018,54:45-49.
    [5] Isenman H,Fisher D. Advances in prevention and treatment of vancomycin-resistant Enterococcus infection[J]. Curr Opin Infect Dis,2016,29(6):577-582.
    [6] Hudson GA,Mitchell DA. RiPP antibiotics:biosynthesis and engineering potential[J]. Curr Opin Microbiol,2018,45:61-69.
    [7] Blair JMA,Webber MA,Baylay AJ,et al. Molecular mechanisms of antibiotic resistance[J]. Nat Rev Microbiol,2015,13(1):42-51.
    [8] Crofts TS,Gasparrini AJ,Dantas G. Next-generation approaches to understand and combat the antibiotic resistome[J]. Nat Rev Microbiol,2017,15(7):422-434.
    [9] Harms JM,Wilson DN,Schluenzen F,et al. Translational regulation via L11:molecular switches on the ribosome turned on and off by thiostrepton and micrococcin[J]. Mol Cell,2008,30(1):26-38.
    [10] Wang B,LaMattina JW,Badding ED,et al. Using peptide mimics to study the biosynthesis of the side-ring system of nosiheptide[J]. Methods Enzymol,2018,606:241-268.
    [11] Yang MY,Zhang JW,Wu XR,et al. Optimization of critical medium components for enhancing antibacterial thiopeptide nocathiacin I production with significantly improved quality[J]. Chin J Nat Med,2017,15(4):292-300.
    [12] Li WY,Huang S,Liu XH,et al. N-demethylation of nocathiacin I via photo-oxidation[J]. Bioorg Med Chem Lett,2008,18(14):4051-4053.
    [13] Feng K,Wang SZ,Ma HR,et al. Chirality plays critical roles in enhancing the aqueous solubility of nocathiacin I by block copolymer micelles[J]. J Pharm Pharmacol,2013,65(1):64-71.
    [14] Xu LB,Farthing AK,Dropinski JF,et al. Synthesis and antibacterial activity of novel water-soluble nocathiacin analogs[J]. Bioorg Med Chem Lett,2013,23(1):366-369.
    [15] Xu LB,Farthing AK,Dropinski JF,et al. Nocathiacin analogs:synthesis and antibacterial activity of novel water-soluble amides[J]. Bioorg Med Chem Lett,2009,19(13):3531-3535.
    [16] Ziemert N,Alanjary M,Weber T. The evolution of genome mining in microbes—a review[J]. Nat Prod Rep,2016,33(8):988-1005.
    [17] Russell AH,Truman AW. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides[J]. Comput Struct Biotechnol J,2020,18:1838-1851.
    [18] Yu Y,Duan L,Zhang Q,et al. Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework[J]. ACS Chem Biol,2009,4(10):855-864.
    [19] Liao RJ,Duan L,Lei C,et al. Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications[J]. Chem Biol,2009,16(2):141-147.
    [20] Blin K,Shaw S,Steinke K,et al. antiSMASH 5.0:updates to the secondary metabolite genome mining pipeline[J]. Nucleic Acids Res,2019,47(W1):W81-W87.
    [21] Lin QH,Zhang GT,Li SM,et al. Development of a genetic modification system for caerulomycin producer Actinoalloteichus sp. WH1-2216-6[J]. Acta Microbiol Sin(微生物学报),2011,51(8):1032-1041.
    [22] Mocek U,Chen LC,Keller PJ,et al. 1H and 13C NMR assignments of the thiopeptide antibiotic nosiheptide[J]. J Antibiot (Tokyo),1989,42(11):1643-1648.
    [23] Arias P,Fernández-Moreno MA,Malpartida F. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein[J]. J Bacteriol,1999,181(22):6958-6968.
    [24] Li JJ,Li Y,Niu GQ,et al. NosP-regulated nosiheptide production responds to both peptidyl and small-molecule ligands derived from the precursor peptide[J]. Cell Chem Biol,2018,25(2):143-153.e4.
    [25] Ding Y,Yu Y,Pan HX,et al. Moving posttranslational modifications forward to biosynthesize the glycosylated thiopeptide nocathiacin I in Nocardia sp. ATCC202099[J]. Mol Biosyst,2010,6(7):1180-1185.
    [26] de Vries RH,Viel JH,Oudshoorn R,et al. Selective modification of ribosomally synthesized and post-translationally modified peptides (RiPPs) through Diels-alder cycloadditions on dehydroalanine residues[J]. Chemistry,2019,25(55):12698-12702.
    [27] Kennedy M,Krouse D. Strategies for improving fermentation medium performance:a review[J]. J Ind Microbiol Biotechnol,1999,23(6):456-475.
    [28] Schwientek P,Wendler S,Neshat A,et al. Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media[J]. J Biotechnol,2013,167(2):166-177.
    [29] Maulvi FA,Parmar RJ,Shukla MR,et al. Plackett-Burman design for screening of critical variables and their effects on the optical transparency and swelling of gatifloxacin-Pluronic-loaded contact lens[J]. Int J Pharm,2019,566:513-519.
    [30] Silva CL,Perestrelo R,Silva P,et al. Implementing a central composite design for the optimization of solid phase microextraction to establish the urinary volatomic expression:a first approach for breast cancer[J]. Metabolomics,2019,15(4):64.
    [31] Pan ZH,Jiao RH,Lu YH,et al. Enhancement of dalesconols A and B production via upregulation of laccase activity by medium optimization and inducer supplementation in submerged fermentation of Daldinia eschscholzii[J]. Bioresour Technol,2015,192:346-353.
  • 期刊类型引用(1)

    1. 王浩阳,郭琳,赵晖,曹利华,李娜,苗明三. 基于Wnt/β-catenin信号通路靶向的中药有效成分及中药复方防治乳腺癌特点分析. 中国实验方剂学杂志. 2025(05): 282-290 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  126
  • HTML全文浏览量:  12
  • PDF下载量:  270
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-11-22
  • 刊出日期:  2022-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭