[1] |
. Nature,2020,582(7811):294-297.
|
[2] |
Culp EJ,Waglechner N,Wang WL,et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling[J]. Nature,2020,578(7796):582-587.
|
[3] |
Hutchings MI,Truman AW,Wilkinson B. Antibiotics:past,present and future[J]. Curr Opin Microbiol,2019,51:72-80.
|
[4] |
Furusawa C,Horinouchi T,Maeda T. Toward prediction and control of antibiotic-resistance evolution[J]. Curr Opin Biotechnol,2018,54:45-49.
|
[5] |
Isenman H,Fisher D. Advances in prevention and treatment of vancomycin-resistant Enterococcus infection[J]. Curr Opin Infect Dis,2016,29(6):577-582.
|
[6] |
Hudson GA,Mitchell DA. RiPP antibiotics:biosynthesis and engineering potential[J]. Curr Opin Microbiol,2018,45:61-69.
|
[7] |
Blair JMA,Webber MA,Baylay AJ,et al. Molecular mechanisms of antibiotic resistance[J]. Nat Rev Microbiol,2015,13(1):42-51.
|
[8] |
Crofts TS,Gasparrini AJ,Dantas G. Next-generation approaches to understand and combat the antibiotic resistome[J]. Nat Rev Microbiol,2017,15(7):422-434.
|
[9] |
Harms JM,Wilson DN,Schluenzen F,et al. Translational regulation via L11:molecular switches on the ribosome turned on and off by thiostrepton and micrococcin[J]. Mol Cell,2008,30(1):26-38.
|
[10] |
Wang B,LaMattina JW,Badding ED,et al. Using peptide mimics to study the biosynthesis of the side-ring system of nosiheptide[J]. Methods Enzymol,2018,606:241-268.
|
[11] |
Yang MY,Zhang JW,Wu XR,et al. Optimization of critical medium components for enhancing antibacterial thiopeptide nocathiacin I production with significantly improved quality[J]. Chin J Nat Med,2017,15(4):292-300.
|
[12] |
Li WY,Huang S,Liu XH,et al. N-demethylation of nocathiacin I via photo-oxidation[J]. Bioorg Med Chem Lett,2008,18(14):4051-4053.
|
[13] |
Feng K,Wang SZ,Ma HR,et al. Chirality plays critical roles in enhancing the aqueous solubility of nocathiacin I by block copolymer micelles[J]. J Pharm Pharmacol,2013,65(1):64-71.
|
[14] |
Xu LB,Farthing AK,Dropinski JF,et al. Synthesis and antibacterial activity of novel water-soluble nocathiacin analogs[J]. Bioorg Med Chem Lett,2013,23(1):366-369.
|
[15] |
Xu LB,Farthing AK,Dropinski JF,et al. Nocathiacin analogs:synthesis and antibacterial activity of novel water-soluble amides[J]. Bioorg Med Chem Lett,2009,19(13):3531-3535.
|
[16] |
Ziemert N,Alanjary M,Weber T. The evolution of genome mining in microbes—a review[J]. Nat Prod Rep,2016,33(8):988-1005.
|
[17] |
Russell AH,Truman AW. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides[J]. Comput Struct Biotechnol J,2020,18:1838-1851.
|
[18] |
Yu Y,Duan L,Zhang Q,et al. Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework[J]. ACS Chem Biol,2009,4(10):855-864.
|
[19] |
Liao RJ,Duan L,Lei C,et al. Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications[J]. Chem Biol,2009,16(2):141-147.
|
[20] |
Blin K,Shaw S,Steinke K,et al. antiSMASH 5.0:updates to the secondary metabolite genome mining pipeline[J]. Nucleic Acids Res,2019,47(W1):W81-W87.
|
[21] |
Lin QH,Zhang GT,Li SM,et al. Development of a genetic modification system for caerulomycin producer Actinoalloteichus sp. WH1-2216-6[J]. Acta Microbiol Sin(微生物学报),2011,51(8):1032-1041.
|
[22] |
Mocek U,Chen LC,Keller PJ,et al. 1H and 13C NMR assignments of the thiopeptide antibiotic nosiheptide[J]. J Antibiot (Tokyo),1989,42(11):1643-1648.
|
[23] |
Arias P,Fernández-Moreno MA,Malpartida F. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein[J]. J Bacteriol,1999,181(22):6958-6968.
|
[24] |
Li JJ,Li Y,Niu GQ,et al. NosP-regulated nosiheptide production responds to both peptidyl and small-molecule ligands derived from the precursor peptide[J]. Cell Chem Biol,2018,25(2):143-153.e4.
|
[25] |
Ding Y,Yu Y,Pan HX,et al. Moving posttranslational modifications forward to biosynthesize the glycosylated thiopeptide nocathiacin I in Nocardia sp. ATCC202099[J]. Mol Biosyst,2010,6(7):1180-1185.
|
[26] |
de Vries RH,Viel JH,Oudshoorn R,et al. Selective modification of ribosomally synthesized and post-translationally modified peptides (RiPPs) through Diels-alder cycloadditions on dehydroalanine residues[J]. Chemistry,2019,25(55):12698-12702.
|
[27] |
Kennedy M,Krouse D. Strategies for improving fermentation medium performance:a review[J]. J Ind Microbiol Biotechnol,1999,23(6):456-475.
|
[28] |
Schwientek P,Wendler S,Neshat A,et al. Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media[J]. J Biotechnol,2013,167(2):166-177.
|
[29] |
Maulvi FA,Parmar RJ,Shukla MR,et al. Plackett-Burman design for screening of critical variables and their effects on the optical transparency and swelling of gatifloxacin-Pluronic-loaded contact lens[J]. Int J Pharm,2019,566:513-519.
|
[30] |
Silva CL,Perestrelo R,Silva P,et al. Implementing a central composite design for the optimization of solid phase microextraction to establish the urinary volatomic expression:a first approach for breast cancer[J]. Metabolomics,2019,15(4):64.
|
[31] |
Pan ZH,Jiao RH,Lu YH,et al. Enhancement of dalesconols A and B production via upregulation of laccase activity by medium optimization and inducer supplementation in submerged fermentation of Daldinia eschscholzii[J]. Bioresour Technol,2015,192:346-353.
|