高级检索

非甾体类抗炎药致小肠损伤及药物防治的研究进展

李雨宸, 潘子倩, 肖梦雪, 张媛媛

李雨宸, 潘子倩, 肖梦雪, 张媛媛. 非甾体类抗炎药致小肠损伤及药物防治的研究进展[J]. 中国药科大学学报, 2023, 54(2): 150-158. DOI: 10.11665/j.issn.1000-5048.20220930001
引用本文: 李雨宸, 潘子倩, 肖梦雪, 张媛媛. 非甾体类抗炎药致小肠损伤及药物防治的研究进展[J]. 中国药科大学学报, 2023, 54(2): 150-158. DOI: 10.11665/j.issn.1000-5048.20220930001
LI Yuchen, PAN Ziqian, XIAO Mengxue, ZHANG Yuanyuan. Advances in research on small intestinal injuries caused by nonsteroidal anti-inflammatory drugs and its prevention and treatment[J]. Journal of China Pharmaceutical University, 2023, 54(2): 150-158. DOI: 10.11665/j.issn.1000-5048.20220930001
Citation: LI Yuchen, PAN Ziqian, XIAO Mengxue, ZHANG Yuanyuan. Advances in research on small intestinal injuries caused by nonsteroidal anti-inflammatory drugs and its prevention and treatment[J]. Journal of China Pharmaceutical University, 2023, 54(2): 150-158. DOI: 10.11665/j.issn.1000-5048.20220930001

非甾体类抗炎药致小肠损伤及药物防治的研究进展

Advances in research on small intestinal injuries caused by nonsteroidal anti-inflammatory drugs and its prevention and treatment

  • 摘要: 非甾体类抗炎药(nonsteroidal anti-inflammatory drugs,NSAIDs)在临床应用中常见胃肠道不良反应,其中NSAIDs引起的小肠损伤(NSAIDs-induced small intestinal injuries,NSIs)表现为出现空肠及回肠黏膜红斑、糜烂、溃疡、出血、肠壁穿孔、梗阻等。NSIs的病理机制复杂,且缺乏针对NSIs的有效预防或治疗手段。就近5年关于NSIs病理机制和米索前列醇、黏膜保护剂、抗生素及益生菌、中药及其活性成分、营养补充剂等药物防治NSIs的研究进展进行综述,以期为NSIs的新药研发提供参考和依据。
    Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) are clinically used with common gastrointestinal adverse reactions, among which NSAIDs-induced small intestinal injuries (NSIs) are manifested in the appearance of jejunum and ileal mucosa erythema, erosion, ulcer, hemorrhage, intestinal wall perforation and obstruction et al..The pathological mechanisms of NSIs are complex, with a lack of effective prevention or treatment methods.This review summarizes the research progress of the pathological mechanisms of NSIs as well as the prevention and treatment of NSIs by misoprostol, mucosal protective agents, antibiotics and probiotics, traditional Chinese medicines and their active ingredients, nutritional supplements and other drugs in the past five years, in order to provide reference and basis for the research and development of new NSIs drugs.
  • [1] Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage:a current perspective[J]. Biochem Pharmacol, 2020, 180: 114147.
    [2] Park J, Jeon SR, Kim JO, et al. Rebleeding rate and risk factors in nonsteroidal anti-inflammatory drug-induced enteropathy[J]. J Dig Dis, 2018, 19(5): 279-287.
    [3] Tai FWD, McAlindon ME. NSAIDs and the small bowel[J]. Curr Opin Gastroenterol, 2018, 34(3): 175-182.
    [4] Watanabe T, Fujiwara Y, Chan FKL. Current knowledge on non-steroidal anti-inflammatory drug-induced small-bowel damage: a comprehensive review[J]. J Gastroenterol, 2020, 55(5): 481-495.
    [5] Maseda D, Ricciotti E. NSAID-gut microbiota interactions[J]. Front Pharmacol, 2020, 11: 1153.
    [6] Nadatani Y, Watanabe T, Suda W, et al. Gastric acid inhibitor aggravates indomethacin-induced small intestinal injury via reducing Lactobacillus johnsonii[J]. Sci Rep, 2019, 9(1): 17490.
    [7] Su TT, Lai SC, Lee A, et al. Meta-analysis: proton pump inhibitors moderately increase the risk of small intestinal bacterial overgrowth[J]. J Gastroenterol, 2018, 53(1): 27-36.
    [8] Takashima S, Tanaka F, Kawaguchi Y, et al. Proton pump inhibitors enhance intestinal permeability via dysbiosis of gut microbiota under stressed conditions in mice[J]. Neurogastroenterol Motil, 2020, 32(7): e13841.
    [9] Takeuchi K, Amagase K. Roles of cyclooxygenase, prostaglandin E2 and EP receptors in mucosal protection and ulcer healing in the gastrointestinal tract[J]. Curr Pharm Des, 2018, 24(18): 2002-2011.
    [10] Bjarnason I, Scarpignato C, Holmgren E, et al. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs[J]. Gastroenterology, 2018, 154(3): 500-514.
    [11] Shimada S, Tanigawa T, Watanabe T, et al. Involvement of gliadin, a component of wheat gluten, in increased intestinal permeability leading to non-steroidal anti-inflammatory drug-induced small-intestinal damage[J]. PLoS One, 2019, 14(2): e0211436.
    [12] Wang PP, Jia YF, Wu RR, et al. Human gut bacterial β-glucuronidase inhibition: an emerging approach to manage medication therapy[J]. Biochem Pharmacol, 2021, 190: 114566.
    [13] Hutka B, Lázár B, Tóth AS, et al. The nonsteroidal anti-inflammatory drug ketorolac alters the small intestinal microbiota and bile acids without inducing intestinal damage or delaying peristalsis in the rat[J]. Front Pharmacol, 2021, 12: 664177.
    [14] Wang XL, Tang Q, Hou HQ, et al. Gut microbiota in NSAID enteropathy: new insights from inside[J]. Front Cell Infect Microbiol, 2021, 11: 679396.
    [15] Lázár B, László SB, Hutka B, et al. A comprehensive time course and correlation analysis of indomethacin-induced inflammation, bile acid alterations and dysbiosis in the rat small intestine[J]. Biochem Pharmacol, 2021, 190: 114590.
    [16] Yoshikawa K, Kurihara C, Furuhashi H, et al. Psychological stress exacerbates NSAID-induced small bowel injury by inducing changes in intestinal microbiota and permeability via glucocorticoid receptor signaling[J]. J Gastroenterol, 2017, 52(1): 61-71.
    [17] Colucci R, Pellegrini C, Fornai M, et al. Pathophysiology of NSAID-associated intestinal lesions in the rat: luminal bacteria and mucosal inflammation as targets for prevention[J]. Front Pharmacol, 2018, 9: 1340.
    [18] Sugimura N, Otani K, Watanabe T, et al. High-fat diet-mediated dysbiosis exacerbates NSAID-induced small intestinal damage through the induction of interleukin-17A[J]. Sci Rep, 2019, 9(1): 16796.
    [19] Maseda D, Zackular JP, Trindade B, et al. Nonsteroidal anti-inflammatory drugs alter the microbiota and exacerbate Clostridium difficile colitis while dysregulating the inflammatory response[J]. mBio, 2019, 10(1): e02282-e02218.
    [20] Mu?oz-Miralles J, Trindade BC, Castro-Córdova P, et al. Indomethacin increases severity of Clostridium difficile infection in mouse model[J]. Future Microbiol, 2018, 13(11): 1271-1281.
    [21] Yoshihara T, Oikawa Y, Kato T, et al. The protective effect of Bifidobacterium bifidum G9-1 against mucus degradation by Akkermansia muciniphila following small intestine injury caused by a proton pump inhibitor and aspirin[J]. Gut Microbes, 2020, 11(5): 1385-1404.
    [22] Tsujimoto H, Hirata Y, Ueda Y, et al. Effect of a proton-pump inhibitor on intestinal microbiota in patients taking low-dose aspirin[J]. Eur J Clin Pharmacol, 2021, 77(11): 1639-1648.
    [23] Li K, Cheng X, Jin R, et al. The influence of different proton pump inhibitors and potassium-competitive acid blockers on indomethacin-induced small intestinal injury[J/OL]. J Gastroenterol Hepatol, (2022-08-08)[2022-09-19]. https: //onlinelibrary.wiley.com/doi/10.1111/jgh.15973
    [24] Taha AS, McCloskey C, McSkimming P, et al. Misoprostol for small bowel ulcers in patients with obscure bleeding taking aspirin and non-steroidal anti-inflammatory drugs (MASTERS): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2018, 3(7): 469-476.
    [25] Kyaw MH, Otani K, Ching JYL, et al. Misoprostol heals small bowel ulcers in aspirin users with small bowel bleeding[J]. Gastroenterology, 2018, 155(4): 1090-1097.e1.
    [26] Teutsch B, Boros E, Váncsa S, et al. Mucoprotective drugs can prevent and treat nonsteroidal anti-inflammatory drug-induced small bowel enteropathy: a systematic review and meta-analysis of randomized controlled trials[J]. Therap Adv Gastroenterol, 2021, 14: 17562848211038772.
    [27] Tanigawa T, Watanabe T, Higashimori A, et al. Rebamipide ameliorates indomethacin-induced small intestinal damage and proton pump inhibitor-induced exacerbation of this damage by modulation of small intestinal microbiota[J]. PLoS One, 2021, 16(1): e0245995.
    [28] Xu N, Zhang CP, Jing LL, et al. Protective effect and mechanism of rebamipide on NSAIDs associated small bowel injury[J]. Int Immunopharmacol, 2021, 90: 107136.
    [29] Oh DJ, Lee DH, Choi YJ, et al. Tu1234 - the effect of rebamipide on nsaid-induced gastroenteropathy compared with lansoprazole: a multi-center, randomized, open labeled, pilot study[J]. Gastroenterology, 2018, 154(6): S-910.
    [30] Zhao J, Fan YH, Ye W, et al. The protective effect of teprenone on aspirin-related gastric mucosal injuries[J]. Gastroenterol Res Pract, 2019, 2019: 6532876.
    [31] Chitapanarux T, Lertprasertsuke N, Kongnak A. Teprenone for the prevention of low-dose aspirin-induced gastric mucosal injury in Helicobacter pylori-negative patients[J]. Scand J Gastroenterol, 2019, 54(10): 1199-1204.
    [32] Chao GQ, Wang ZJ, Yang CY, et al. Teprenone ameliorates diclofenac-induced small intestinal injury via inhibiting protease activated receptors 1 and 2 activity[J]. Biomarkers, 2021, 26(1): 38-44.
    [33] Ota K, Takeuchi T, Kojima Y, et al. Preventive effect of ecabet sodium on low-dose aspirin-induced small intestinal mucosal injury: a randomized, double-blind, pilot study[J]. BMC Gastroenterol, 2019, 19(1): 4.
    [34] Scarpignato C, Dolak W, Lanas A, et al. Rifaximin reduces the number and severity of intestinal lesions associated with use of nonsteroidal anti-inflammatory drugs in humans[J]. Gastroenterology, 2017, 152(5): 980-982.e3.
    [35] Xiao X, Nakatsu G, Jin Y, et al. Gut microbiota mediates protection against enteropathy induced by indomethacin[J]. Sci Rep, 2017, 7: 40317.
    [36] Zhang JH, Sun YM, Wang R, et al. Gut microbiota-mediated drug-drug interaction between amoxicillin and aspirin[J]. Sci Rep, 2019, 9(1): 16194.
    [37] Pan FW, Zhang LY, Li M, et al. Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice[J]. Microbiome, 2018, 6(1): 54.
    [38] Mortensen B, Murphy C, O''Grady J, et al. Bifidobacteriumbreve Bif195 protects against small-intestinal damage caused by acetylsalicylic acid in healthy volunteers[J]. Gastroenterology, 2019, 157(3): 637-646.e4.
    [39] Fornai M, Pellegrini C, Benvenuti L, et al. Protective effects of the combination Bifidobacterium longum plus lactoferrin against NSAID-induced enteropathy[J]. Nutrition, 2020, 70: 110583.
    [40] Xu CL, Qiao L, Ma L, et al. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway[J]. Int J Nanomedicine, 2019, 14: 4491-4502.
    [41] Monteros MJM, Galdeano CM, Balcells MF, et al. Probiotic lactobacilli as a promising strategy to ameliorate disorders associated with intestinal inflammation induced by a non-steroidal anti-inflammatory drug[J]. Sci Rep, 2021, 11(1): 571.
    [42] Suzuki T, Masui AY, Nakamura J, et al. Yogurt containing Lactobacillus gasseri mitigates aspirin-induced small bowel injuries: a prospective, randomized, double-blind, placebo-controlled trial[J]. Digestion, 2017, 95(1): 49-54.
    [43] Jia B, Chen JN, Tian ZL, et al. Traditional Chinese medicine composition for treating small intestine mucosa injury caused by non-steroidal anti-inflammatory drugs, and preparation method and preparation thereof:
    CN113908212A[P]. 2022-01-11.
    [44] Chao GQ, Ye FX, Yuan Y, et al. Berberine ameliorates non-steroidal anti-inflammatory drugs-induced intestinal injury by the repair of enteric nervous system[J]. Fundam Clin Pharmacol, 2020, 34(2): 238-248.
    [45] Wang ZL, Xu G, Li ZY, et al. NLRP3 inflammasome pharmacological inhibitors in Glycyrrhiza for NLRP3-driven diseases treatment: extinguishing the fire of inflammation[J]. J Inflamm Res, 2022, 15: 409-422.
    [46] Nakamura S, Watanabe T, Tanigawa T, et al. Isoliquiritigenin ameliorates indomethacin-induced small intestinal damage by inhibiting NOD-like receptor family, pyrin domain-containing 3 inflammasome activation[J]. Pharmacology, 2018, 101(5/6): 236-245.
    [47] Guo C, Huang KK, Zeng JH, et al. Extract of Chaenomeles speciosa (sweet) nakai prevents intestinal mucosal injury induced by non-steroidal anti-inflammatory drugs (NSAIDs) in mice[J]. Mod Food Sci Technol (现代食品科技), 2019, 35(11): 45-51.
    [48] Li XM, He JY, Li S, et al. Protective effect and mechanism of total triterpenoids from Chaenomeles speciosa (Sweet) Nakai against small intestinal injury induced by indomethacin in rats[J]. Pharmacol Clin Chin Mater Med (中药药理与临床), 2018, 34(5): 55-60.
    [49] He HB, Li XM, Li XQ, et al. Clinical efficacy of muguasantie combined with rebamipide in the treatment of small bowel injury induced by nonsteroidal anti-inflammatory drugs[J]. Pharmacol Clin Chin Mater Med (中药药理与临床), 2018, 34(4): 172-176.
    [50] Singh DP, Borse SP, Rana RT, et al. Curcumin, a component of turmeric, efficiently prevents diclofenac sodium-induced gastroenteropathic damage in rats: a step towards translational medicine[J]. Food Chem Toxicol, 2017, 108: 43-52.
    [51] Cao ST, Wang CC, Yan JT, et al. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway[J]. Free Radic Biol Med, 2020, 147: 8-22.
    [52] Nagai KT, Ueno Y, Tanaka S, et al. Polysaccharides derived from Ganoderma lucidum fungus mycelia ameliorate indomethacin-induced small intestinal injury via induction of GM-CSF from macrophages[J]. Cell Immunol, 2017, 320: 20-28.
    [53] Wang MY, Zhao H, Wen X, et al. Citrus flavonoids and the intestinal barrier: interactions and effects[J]. Compr Rev Food Sci Food Saf, 2021, 20(1): 225-251.
    [54] Chen SS, Jiang JP, Chao GQ, et al. Pure total flavonoids from Citrus protect against nonsteroidal anti-inflammatory drug-induced small intestine injury by promoting autophagy in vivo and in vitro[J]. Front Pharmacol, 2021, 12: 622744.
    [55] Singh DP, Borse SP, Nivsarkar M. Overcoming the exacerbating effects of ranitidine on NSAID-induced small intestinal toxicity with quercetin: providing a complete GI solution[J]. Chem Biol Interact, 2017, 272: 53-64.
    [56] Shu R, Wang CY, Meng Q, et al. Resveratrol enhances the protective effects of JBP485 against indomethacin-induced rat intestinal damage in vivo and vitro through up-regulating oligopeptide transporter 1 (Pept1)[J]. Biomed Pharmacother, 2019, 111: 251-261.
    [57] Playford RJ, Garbowsky M, Marchbank T. Pasteurized chicken egg powder stimulates proliferation and migration of AGS, RIE1, and caco-2 cells and reduces NSAID-induced injury in mice and colitis in rats[J]. J Nutr, 2020, 150(6): 1434-1442.
    [58] Le Phan TH, Park SY, Jung HJ, et al. The role of processed Aloe vera gel in intestinal tight junction: an in vivo and in vitro study[J]. Int J Mol Sci, 2021, 22(12): 6515.
    [59] Zhang DD, Zhou XT, Liu LY, et al. Glucomannan from Aloe vera gel promotes intestinal stem cell-mediated epithelial regeneration via the Wnt/β-catenin pathway[J]. J Agric Food Chem, 2021, 69(36): 10581-10591.
    [60] Kim MW, Kang JH, Shin E, et al. Processed Aloe vera gel attenuates non-steroidal anti-inflammatory drug (NSAID)-induced small intestinal injury by enhancing mucin expression[J]. Food Funct, 2019, 10(9): 6088-6097.
    [61] Wallace JL, Nagy P, Feener TD, et al. A proof-of-concept, Phase 2 clinical trial of the gastrointestinal safety of a hydrogen sulfide-releasing anti-inflammatory drug[J]. Br J Pharmacol, 2020, 177(4): 769-777.
    [62] G?owacka U, Magierowska K, Wójcik D, et al. Microbiome profile and molecular pathways alterations in gastrointestinal tract by hydrogen sulfide-releasing nonsteroidal anti-inflammatory drug (ATB-352): insight into possible safer polypharmacy[J]. Antioxid Redox Signal, 2022, 36(4/5/6): 189-210.
    [63] Jung ES, Jang HJ, Hong EM, et al. The protective effect of 5-aminosalicylic acid against non-steroidal anti-inflammatory drug-induced injury through free radical scavenging in small intestinal epithelial cells[J]. Medicina (Kaunas), 2020, 56(10): 515.
    [64] Han YM, Park JM, Her S, et al. Revaprazan prevented indomethacin-induced intestinal damages by enhancing tight junction related mechanisms[J]. Biochem Pharmacol, 2020, 182: 114290.
  • 期刊类型引用(7)

    1. 刘艳,温田田,孙野,陈庆山,张丽莉,匡海学,杨炳友. 白鲜皮化学成分研究. 中成药. 2025(03): 812-821 . 百度学术
    2. 陈禹竹,徐晓敏,刘树民,卢芳. 白鲜皮及其有效成分的药理作用研究进展. 药物评价研究. 2024(02): 409-418 . 百度学术
    3. 刘新月,陈乐乐,孙鹏,展照双,王加锋. 白鲜皮化学成分、药理作用和毒性研究进展及质量标志物预测分析. 中国新药杂志. 2023(08): 799-805 . 百度学术
    4. 牛晨冬,郭丽娜,张金玲,卢宜然,王琳琳,李宗锴. 白鲜属植物化学成分与药理作用研究进展. 中成药. 2022(04): 1231-1238 . 百度学术
    5. 葛翎,路露,周谦,张秋生,蔡波,黄晓德,张峰伦,钱雪,李海涛,陈斌,曹鹏. 马齿苋醇提物体外生物学活性测定. 中国野生植物资源. 2021(04): 8-14+21 . 百度学术
    6. 梁郭智,孙淑英. 白鲜研究进展. 时珍国医国药. 2020(02): 408-411 . 百度学术
    7. 胡玉恒,孙捷,杨洁,王晓静. 3-(4′-苯甲酰基氨基-苯基)-香豆素衍生物的合成及体外降血糖活性. 中国药科大学学报. 2019(02): 168-174 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  256
  • HTML全文浏览量:  9
  • PDF下载量:  691
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2023-02-05
  • 刊出日期:  2023-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭