[1] |
Wiskur SL, Lavigne JJ, Ait-Haddou H, et al. pKa values and geometries of secondary and tertiary amines complexed to boronic acids implications for sensor design[J]. Org Lett, 2001, 3(9): 1311-1314.
|
[2] |
Springsteen G, Wang BH. A detailed examination of boronic acid-diol complexation[J]. Tetrahedron, 2002, 58(26): 5291-5300.
|
[3] |
Paramore A, Frantz S. Bortezomib[J]. Nat Rev Drug Discov 2,003, 2(8): 611-612.
|
[4] |
Chen D, Frezza M, Schmitt S, et al. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives[J]. Curr Cancer Drug Targets, 2011, 11(3): 239-253.
|
[5] |
Adams J, Behnke M, Chen SW, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids[J]. Bioorg Med Chem Lett, 1998, 8(4): 333-338.
|
[6] |
Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates[J]. Chem Biol, 2001, 8(8): 739-758.
|
[7] |
Groll M, Berkers CR, Ploegh HL, et al. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome[J]. Structure, 2006, 14(3): 451-456.
|
[8] |
Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents[J]. Cancer Res, 1999, 59(11):2615-2622.
|
[9] |
Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells[J]. Cancer Res, 2001, 61(7): 3071-3076.
|
[10] |
Shirley M. Ixazomib: first global approval[J]. Drugs, 2016, 76(3): 405-411.
|
[11] |
Kupperman E, Lee EC, Cao YY, et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer[J]. Cancer Res, 2010, 70(5): 1970-1980.
|
[12] |
Muz B, Ghazarian RN, Ou M, et al. Spotlight on ixazomib: potential in the treatment of multiple myeloma[J]. Drug Des Devel Ther, 2016, 10: 217-226.
|
[13] |
Chauhan D, Tian Z, Zhou B, et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells[J]. Clin Cancer Res, 2011, 17(16): 5311-5321.
|
[14] |
Markham A. Tavaborole: first global approval[J]. Drugs, 2014, 74(13): 1555-1558.
|
[15] |
Jinna S, Finch J. Spotlight on tavaborole for the treatment of onychomycosis[J]. Drug Des Devel Ther, 2015, 9: 6185-6190.
|
[16] |
Rock FL, Mao WM, Yaremchuk A, et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site[J]. Science, 2007, 316(5832): 1759-1761.
|
[17] |
Baker SJ, Zhang YK, Akama T, et al. Discovery of a new boron-containing antifungal agent, 5-fluoro-1, 3-dihydro-1-hydroxy-2, 1-benzoxaborole (AN2690), for the potential treatment of onychomycosis[J]. J Med Chem, 2006, 49(15):4447-4450.
|
[18] |
Benkovic SJ, Baker SJ, Alley MRK, et al. Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH[J]. J Med Chem, 2005, 48(23):7468-7476.
|
[19] |
Markinson B, Ghannoum M, Winter T, et al. Examining the benefits of the boron-based mechanism of action and physicochemical properties of tavaborole in the treatment of onychomycosis[J]. J Am Podiatr Med Assoc, 2018, 108(1):12-19.
|
[20] |
Elewski BE, Aly R, Baldwin SL, et al. Efficacy and safety of tavaborole topical solution, 5%, a novel boron-based antifungal agent, for the treatment of toenail onychomycosis: results from 2 randomized phase-III studies[J]. J Am Acad Dermatol, 2015, 73(1): 62-69.
|
[21] |
Milakovic M, Gooderham MJ. Phosphodiesterase-4 inhibition in psoriasis[J]. Psoriasis (Auckl), 2021, 11: 21-29.
|
[22] |
Tulsian NK, Krishnamurthy S, Anand GS. Channeling of cAMP in PDE-PKA complexes promotes signal adaptation[J]. Biophys J, 2017, 112(12): 2552-2566.
|
[23] |
Fleming YM, Frame MC, Houslay MD. PDE4-regulated cAMP degradation controls the assembly of integrin-dependent actin adhesion structures and REF52 cell migration[J]. J Cell Sci, 2004, 117(Pt 11): 2377-2388.
|
[24] |
Grewe SR, Chan SC, Hanifin JM. Elevated leukocyte cyclic AMP—phosphodiesterase in atopic disease: a possible mechanism for cyclic AMP—agonist hyporesponsiveness[J]. J Allergy Clin Immunol, 1982, 70(6): 452-457.
|
[25] |
Zane LT, Chanda S, Jarnagin K, et al. Crisaborole and its potential role in treating atopic dermatitis: overview of early clinical studies[J]. Immunotherapy, 2016, 8(8): 853-866.
|
[26] |
Hanifin JM, Chan SC, Cheng JB, et al. Type 4 phosphodiesterase inhibitors have clinical and in vitro anti-inflammatory effects in atopic dermatitis[J]. J Investig Dermatol, 1996, 107(1): 51-56.
|
[27] |
Akama T, Baker SJ, Zhang YK, et al. Discovery and structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis[J]. Bioorg Med Chem Lett, 2009, 19(8): 2129-2132.
|
[28] |
Jarnagin K, Chanda S, Coronado D, et al. Crisaborole topical ointment, 2%: a nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 inhibitor in clinical development for the treatment of atopic dermatitis[J]. J Drugs Dermatol, 2016, 15(4): 390-396.
|
[29] |
Zane LT, Kircik L, Call R, et al. Crisaborole topical ointment, 2% in patients ages 2 to 17 years with atopic dermatitis: a phase 1b, open-label, maximal-use systemic exposure study[J]. Pediatr Dermatol, 2016, 33(4): 380-387.
|
[30] |
Murrell DF, Gebauer K, Spelman L, et al. Crisaborole topical ointment, 2% in adults with atopic dermatitis: a phase 2a, vehicle-controlled, proof-of-concept study[J]. J Drugs Dermatol, 2015, 14(10): 1108-1112.
|
[31] |
Tom WL, Van Syoc M, Chanda S, et al. Pharmacokinetic profile, safety, and tolerability of crisaborole topical ointment, 2% in adolescents with atopic dermatitis: an open-label phase 2a study[J]. Pediatr Dermatol, 2016, 33(2): 150-159.
|
[32] |
Stein Gold LF, Spelman L, Spellman MC, et al. A phase 2, randomized, controlled, dose-ranging study evaluating crisaborole topical ointment, 0.5% and 2% in adolescents with mild to moderate atopic dermatitis[J]. J Drugs Dermatol, 2015, 14(12):1394-1399.
|
[33] |
Geng B, Hebert AA, Takiya L, et al. Efficacy and safety trends with continuous, long-term crisaborole use in patients Aged ≥ 2 years with mild-to-moderate atopic dermatitis[J]. Dermatol Ther (Heidelb), 2021, 11(5): 1667-1678.
|
[34] |
Andrei S, Valeanu L, Chirvasuta R, et al. New FDA approved antibacterial drugs: 2015-2017[J]. Discoveries (Craiova), 2018, 6(1): e81.
|
[35] |
Lee YM, Kim J, Trinh S. Meropenem-vaborbactam (vabomereTM): another option for carbapenem-resistant Enterobacteriaceae[J]. P T, 2019, 44(3): 110-113.
|
[36] |
Zhou JY, Stapleton P, Haider S, et al. Boronic acid inhibitors of the class A β-lactamase KPC-2[J]. Bioorg Med Chem, 2018, 26(11): 2921-2927.
|
[37] |
Hecker SJ, Reddy KR, Totrov M, et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases[J]. J Med Chem, 2015, 58(9): 3682-3692.
|
[38] |
Lomovskaya O, Sun DX, Rubio-Aparicio D, et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae[J]. Antimicrob Agents Chemother, 2017, 61(11): e01443-e01417.
|
[39] |
Baldwin CM, Lyseng-Williamson KA, Keam SJ. Meropenem: a review of its use in the treatment of serious bacterial infections[J]. Drugs, 2008, 68(6): 803-838.
|
[40] |
Wenzler E, Scoble PJ. An appraisal of the pharmacokinetic and pharmacodynamic properties of meropenem-vaborbactam[J]. Infect Dis Ther, 2020, 9(4): 769-784.
|
[41] |
Kaye KS, Bhowmick T, Metallidis S, et al. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial[J]. JAMA, 2018, 319(8): 788-799.
|
[42] |
O''Farrell AM, van Vliet A, Abou Farha K, et al. Pharmacokinetic and pharmacodynamic assessments of the dipeptidyl peptidase-4 inhibitor PHX1149: double-blind, placebo-controlled, single- and multiple-dose studies in healthy subjects[J]. Clin Ther, 2007, 29(8): 1692-1705.
|
[43] |
Johnson KMS. Dutogliptin, a dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes mellitus[J]. Curr Opin Investig Drugs, 2010, 11(4):455-463.
|
[44] |
Gupta R, Walunj SS, Tokala RK, et al. Emerging drug candidates of dipeptidyl peptidase IV (DPP IV) inhibitor class for the treatment of type 2 diabetes[J]. Curr Drug Targets, 2009, 10(1): 71-87.
|
[45] |
Garcia-Soria G, Gonzalez-Galvez G, Argoud GM, et al. The dipeptidyl peptidase-4 inhibitor PHX1149 improves blood glucose control in patients with type 2 diabetes mellitus[J]. Diabetes Obes Metab, 2008, 10(4): 293-300.
|
[46] |
von Lewinski D, Selvanayagam JB, Schatz RA, et al. "Protocol for a phase 2, randomized, double-blind, placebo-controlled, safety and efficacy study of dutogliptin in combination with filgrastim in early recovery post-myocardial infarction": study protocol for a randomized controlled trial[J]. Trials, 2020, 21(1): 744.
|
[47] |
Baker CH, Welburn SC. The long wait for a new drug for human African trypanosomiasis[J]. Trends Parasitol, 2018, 34(10): 818-827.
|
[48] |
Jacobs RT, Nare B, Wring SA, et al. SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis[J]. PLoS Negl Trop Dis, 2011, 5(6): e1151.
|
[49] |
Wall RJ, Rico E, Lukac l, et al. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3[J]. Proc Natl Acad Sci U S A, 2018, 115(38): 9616-9621.
|
[50] |
U. S. National Library of Meidcine. Safety and tolerability study of acoziborole in g-HAT seropositive subjects (OXA004). (2022-01-25)[2022-09-28]https://www.clinicaltrials.gov/ct2/show/NCT05256017.
|
[51] |
Li XF, Hernandez V, Rock FL, et al. Discovery of a potent and specific M. tuberculosis leucyl-tRNA synthetase inhibitor: (S)-3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy) benzo[c][1,2] oxaborol-1(3H)-ol (GSK656)[J]. J Med Chem, 2017, 60(19): 8011-8026.
|
[52] |
Wei YY, Yang F, Tang J, et al. Advances in the research of anti-tuberculosis drugs[J]. J China Pharm Univ (中国药科大学学报), 2020, 51(2): 231-239.
|
[53] |
Tenero D, Derimanov G, Carlton A, et al. First-time-in-human study and prediction of early bactericidal activity for GSK3036656, a potent leucyl-tRNA synthetase inhibitor for tuberculosis treatment[J]. Antimicrob Agents Chemother, 2019, 63(8):e00240-e00219.
|
[54] |
U. S. National Library of Meidcine. An early bactericidal activity, safety and tolerability of GSK3036656 in subjects with drug-sensitive pulmonary tuberculosis[EB/OL]. (2018-06-15)[2022-01-03]. https://www.clinicaltrials.gov/ct2/show/NCT03557281.
|
[55] |
Arama T, Plattner J, Kimura R, et al. Structure-activity studies led to the discovery of AN2898 in development for topical treatment of psoriasis and atopic dermatitis[J]. J Am Acad Dermatol, 2009, 60(3): AB71.
|
[56] |
Xiao YC, Yu JL, Dai QQ, et al. Targeting metalloenzymes by boron-containing metal-binding pharmacophores[J]. J Med Chem, 2021, 64(24): 17706-17727.
|
[57] |
Lee ZE, Gogoleva T, Heerinckx F, et al. AN2728 and AN2898 ointments demonstrate safety and efficacy in a bilateral study of atopic dermatitis[J]. J Dermatol Sci, 2013, 69(2): e34.
|
[58] |
Krajnc A, Brem J, Hinchliffe P, et al. Bicyclic boronate VNRX-5133 inhibits metallo- and serine-β-lactamases[J]. J Med Chem, 2019, 62(18): 8544-8556.
|
[59] |
Liu B, Trout REL, Chu GH, et al. Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections[J]. J Med Chem, 2020, 63(6): 2789-2801.
|
[60] |
Dowell JA, Dickerson D, Henkel T. Safety and pharmacokinetics in human volunteers of taniborbactam (VNRX-5133), a novel intravenous β-lactamase inhibitor[J]. Antimicrob Agents Chemother, 2021, 65(11): e0105321.
|
[61] |
U. S. National Library of Meidcine. Safety and efficacy study of cefepime/VNRX-5133 in patients with complicated urinary tract infections (CERTAIN-1)[EB/OL]. (2019-01-15)[2021-12-23]. https://www.clinicaltrials.gov/ct2/show/NCT03840148.
|
[62] |
Chong PY, Shotwell JB, Miller J, et al. Design of n-benzoxaborole benzofuran GSK8175-optimization of human pharmacokinetics inspired by metabolites of a failed clinical HCV inhibitor[J]. J Med Chem, 2019, 62(7): 3254-3267.
|
[63] |
Deng YL, Campbell F, Han KL, et al. Randomized clinical trials towards a single-visit cure for chronic hepatitis C: oral GSK2878175 and injectable RG-101 in chronic hepatitis C patients and long-acting injectable GSK2878175 in healthy participants[J]. J Viral Hepat, 2020, 27(7): 699-708.
|
[64] |
Tsivkovski R, Totrov M, Lomovskaya O. Biochemical characterization of QPX7728, a new ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases[J]. Antimicrob Agents Chemother, 2020, 64(6): e00130-e00120.
|
[65] |
Hecker SJ, Reddy KR, Lomovskaya O, et al. Discovery of cyclic boronic acid QPX7728, an ultrabroad-spectrum inhibitor of serine and metallo-β-lactamases[J]. J Med Chem, 2020, 63(14): 7491-7507.
|
[66] |
Lomovskaya O, Rubio-Aparicio D, Nelson K, et al. In vitro activity of the ultrabroad-spectrum beta-lactamase inhibitor QPX7728 in combination with multiple beta-lactam antibiotics against Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2021, 65(6): e00210-e00221.
|
[67] |
U. S. National Library of Meidcine. P1 Single and multiple ascending dose (SAD/MAD) study of IV QPX7728 alone and combined with QPX2014 in NHV [EB/OL]. (2020-05-08)[2022-10-10] https://www.clinicaltrials.gov/ct2/show/NCT04380207.
|
[68] |
Adams S, Miller GT, Jesson MI, et al. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism[J]. Cancer Res, 2004, 64(15): 5471-5480.
|
[69] |
Lankas GR, Leiting B, Roy RS, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9[J]. Diabetes, 2005, 54(10): 2988-2994.
|
[70] |
Strohbach JW, Akama T, Blakemore DC, et al. Boron containing PDE4 inhibitors: US20200108083[P]. 2020-04-09.
|
[71] |
Klein M, Busch M, Friese-Hamim M, et al. Structure-based optimization and discovery of M3258, a specific inhibitor of the immunoproteasome subunit LMP7 (β5i)[J]. J Med Chem, 2021, 64(14): 10230-10245.
|
[72] |
Zhang J, Zhang JY, Hao GY, et al. Design, synthesis, and structure-activity relationship of 7-propanamide benzoxaboroles as potent anticancer agents[J]. J Med Chem, 2019, 62(14): 6765-6784.
|
[73] |
Wang YL, Liu S, Yu ZJ, et al. Structure-based development of (1-(3''-mercaptopropanamido) methyl) boronic acid derived broad-spectrum, dual-action inhibitors of metallo- and serine-β-lactamases[J]. J Med Chem, 2019, 62(15): 7160-7184.
|
[74] |
Ju Y, He LH, Zhou YZ, et al. Discovery of novel peptidomimetic boronate ClpP inhibitors with noncanonical enzyme mechanism as potent virulence blockers in vitro and in vivo[J]. J Med Chem, 2020, 63(6): 3104-3119.
|
[75] |
Zhang YK, Plattner JJ, Easom EE, et al. Benzoxaborole antimalarial agents. part 5. lead optimization of novel amide pyrazinyloxy benzoxaboroles and identification of a preclinical candidate[J]. J Med Chem, 2017, 60(13): 5889-5908.
|
[76] |
Tan J, Grouleff JJ, Jitkova Y, et al. De novo design of boron-based peptidomimetics as potent inhibitors of human ClpP in the presence of human ClpX[J]. J Med Chem, 2019, 62(13): 6377-6390.
|
[77] |
Clark JM, Salgado-Polo F, MacDonald SJF, et al. Structure-based design of a novel class of autotaxin inhibitors based on endogenous allosteric modulators[J]. J Med Chem, 2022, 65(8): 6338-6351.
|
[78] |
Mowbray CE, Braillard S, Glossop PA, et al. DNDI-6148: a novel benzoxaborole preclinical candidate for the treatment of visceral leishmaniasis[J]. J Med Chem, 2021, 64(21): 16159-16176.
|