[1] |
Burrello C, Garavaglia F, Cribiù FM, et al. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells[J]. Nat Commun, 2018, 9(1): 5184.
|
[2] |
Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system[J]. Nat Rev Immunol, 2004, 4(6): 478-485.
|
[3] |
Liu W, Tan ZL, Xue JF, et al. Therapeutic efficacy of oral immunization with a non-genetically modified Lactococcus lactis-based vaccine CUE-GEM induces local immunity against Helicobacter pylori infection[J]. Appl Microbiol Biotechnol, 2016, 100(14): 6219-6229.
|
[4] |
Zeng ZQ, Liu W, Luo SH, et al. Shape of gastrointestinal immunity with non-genetically modified Lactococcus lactis particles requires commensal bacteria and myeloid cells-derived TGF-β1[J]. Appl Microbiol Biotechnol, 2019, 103(9): 3847-3861.
|
[5] |
Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty[J]. Clin Microbiol Rev, 2007, 20(4): 593-621.
|
[6] |
McHardy IH, Goudarzi M, Tong MM, et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships[J]. Microbiome, 2013, 1(1): 17.
|
[7] |
Spiljar M, Merkler D, Trajkovski M. The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs[J]. Front Immunol, 2017, 8: 1353.
|
[8] |
Corrêa-Oliveira R, Fachi JL, Vieira A, et al. Regulation of immune cell function by short-chain fatty acids[J]. Clin Transl Immunology, 2016, 5(4): e73.
|
[9] |
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease[J]. Nature, 2008, 453(7195): 620-625.
|
[10] |
Lee YP, Huang WC, Lin TJ, et al. Toll-like receptor 4 prevents AOM/DSS-induced colitis-associated colorectal cancer in Bacteroides fragilis gnotobiotic mice[J]. Hum Exp Toxicol, 2021, 40(4): 622-633.
|
[11] |
Rubtsov YP, Rasmussen JP, Chi EY, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces[J]. Immunity, 2008, 28(4): 546-558.
|
[12] |
Cruz-Bermúdez A, Laza-Briviesca R, Vicente-Blanco RJ, et al. Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling[J]. Free Radic Biol Med, 2019, 130 :163-173.
|
[13] |
Qi YY, Du XH, Yao XY, et al. Vildagliptin inhibits high free fatty acid (FFA)-induced NLRP3 inflammasome activation in endothelial cells[J].Aritf Cells Nanomed Biotechnol, 2019, 47(1): 1067-1074.
|
[14] |
Nishita M, Hashimoto MK, Ogata S, et al. Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann''s organizer[J]. Nature, 2000, 403(6771): 781-785.
|
[15] |
Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin[J]. Science, 2005, 307(5717): 1904-1909.
|
[16] |
Kashiwagi I, Morita R, Schichita T, et al. Smad2 and Smad3 inversely regulate TGF-β autoinduction in Clostridium butyricum-activated dendritic cells[J]. Immunity, 2015, 43(1): 65-79.
|
[17] |
Torchinsky MB, Garaude J, Martin AP, et al. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation[J]. Nature, 2009, 458(7234): 78-82.
|
[18] |
Ihara S, Hirata Y, Koike K. TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota[J]. J Gastroenterol, 2017, 52(7): 777-787.
|
[19] |
Biancheri P, Di Sabatino A, Corazza GR, et al. Proteases and the gut barrier[J]. Cell Tissue Res, 2013, 351(2): 269-280.
|
[20] |
Yang L, Pang YL, Moses HL. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression[J]. Trends Immunol, 2010, 31(6): 220-227.
|
[21] |
Flavell RA, Sanjabi S, Wrzesinski SH, et al. The polarization of immune cells in the tumour environment by TGFbeta[J]. Nat Rev Immunol, 2010, 10(8): 554-567.
|
[22] |
Jana S, Jailwala P, Haribhai D, et al. The role of NF-κB and Smad3 in TGF-β-mediated Foxp3 expression[J]. Eur J Immunol, 2009, 39(9): 2571-2583.
|
[23] |
Knoop KA, McDonald KG, Kulkarni DH, et al. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria[J]. Gut, 2016, 65(7): 1100-1109.
|
[24] |
Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice[J]. Gut, 2017, 66(4): 569-580.
|
[25] |
van Nood E, Vireze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile[J].N Engl J Med, 2013, 368(5): 407-415.
|
[26] |
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573.
|
[27] |
Sun MM, Wu W, Liu ZJ, et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. J Gastroenterol, 2017, 52(1): 1-8.
|
[28] |
Millard AL, Mertes PM, Ittelet D, et al. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages[J]. Clin Exp Immunol, 2002, 130(2): 245-255.
|
[29] |
Kim DS, Woo JS, Min HK, et al. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sj?gren''s syndrome[J]. J Autoimmun, 2021, 119: 102611.
|
[30] |
Rosser EC, Piper CJM, Matei DE, et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells[J]. Cell Metab, 2020, 4(31): 837-851.
|
[31] |
Al-Harbi NO, Nadeem A, Ahmad SF, et al. Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells[J]. Int Immunopharmacol, 2018, 58: 24-31.
|
[32] |
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200.
|
[33] |
Paroder V, Spencer SR, Paroder M, et al. Na+/monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer: molecular characterization of SMCT[J].Proc Natl Acad Sci U S A, 2006, 103(19): 7270-7275.
|
[34] |
Wang G, Yu Y, Wang YZ, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy[J]. J Cell Physiol, 2019, 234(10): 17023-17049.
|