[1] |
Panicker N, Kam TI, Wang H, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson''s disease[J]. Neuron, 2022, 110(15): 2422-2437.e9.
|
[2] |
Mahul-Mellier AL, Burtscher J, Maharjan N, et al. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration[J]. Proc Natl Acad Sci U S A, 2020, 117(9): 4971-4982.
|
[3] |
Davie CA. A review of Parkinson''s disease[J]. Br Med Bull, 2008, 86: 109-127.
|
[4] |
Mantovani S, Smith SS, Gordon R, et al. An overview of sleep and circadian dysfunction in Parkinson''s disease[J]. J Sleep Res, 2018, 27(3): e12673.
|
[5] |
Hussein A, Guevara CA, Del Valle P, et al. Non-motor symptoms of Parkinson''s disease: the neurobiology of early psychiatric and cognitive dysfunction[J]. Neuroscientist, 2023, 29(1): 97-116.
|
[6] |
Jankovic J,Tan EK. Parkinson''s disease: etiopathogenesis and treatment[J]. J Neurol Neurosurg Psychiatry, 2020, 91(8): 795-808.
|
[7] |
Bloem BR, Okun MS, Klein C. Parkinson''s disease[J]. Lancet, 2021, 397(10291): 2284-2303.
|
[8] |
Yao S, Xu Z, Chen S, et al. Silk fibroin hydrolysate improves memory impairment via multi-target function[J]. J Funct Foods, 2022, 89: 104942.
|
[9] |
Xu Z, Chen S, Wang Y, et al. Neuroprotective effects of silk fibroin hydrolysate against Aβ25–35 induced cytotoxicity in SH-SY5Y cells and primary hippocampal neurons by regulating ROS inactivation of PP2A[J]. J Funct Foods, 2018, 45: 100-109.
|
[10] |
Zaman V, Shields DC, Shams R, et al. Cellular and molecular pathophysiology in the progression of Parkinson''s disease[J]. Metab Brain Dis, 2021, 36(5): 815-827.
|
[11] |
Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson''s disease[J]. Prog Neurobiol, 2013, 106-107: 17-32.
|
[12] |
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson''s disease[J]. Aging Cell, 2019, 18(6): e13031.
|
[13] |
Ott M, Gogvadze V, Orrenius S, et al. Mitochondria, oxidative stress and cell death[J]. Apoptosis, 2007, 12(5): 913-922.
|
[14] |
Rocha SM, Bantle CM, Aboellail T, et al. Rotenone induces regionally distinct α-synuclein protein aggregation and activation of glia prior to loss of dopaminergic neurons in C57Bl/6 mice[J]. Neurobiol Dis, 2022, 167: 105685.
|
[15] |
Radad K, Al-Shraim M, Al-Emam A, et al. Rotenone: from modelling to implication in Parkinson''s disease[J]. Folia Neuropathol, 2019, 57(4): 317-326.
|
[16] |
Chen YJ, Gao XD, Chen S. Effects and mechanisms of FGF21 on neuronal damage induced by rotenone[J]. J China Pharm Univ (中国药科大学学报),2020,51(6):718-723.
|
[17] |
Zha Q, Gao XD, Chen S. Effects of VHL inhibitor on rotenone-induced Caenorhabditis elegans model of Parkinson''s disease[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(3): 346-351.
|
[18] |
Lopes FM, da Motta LL, De Bastiani MA, et al. RA differentiation enhances dopaminergic features, changes redox parameters, and increases dopamine transporter dependency in 6-Hydroxydopamine-induced neurotoxicity in SH-SY5Y cells[J]. Neurotox Res, 2017, 31(4): 545-559.
|
[19] |
Lopes FM, Schr?der R, da Frota ML, Jr., et al. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies[J]. Brain Res, 2010, 1337: 85-94.
|
[20] |
Dionísio PA, Amaral JD, Rodrigues CMP. Oxidative stress and regulated cell death in Parkinson''s disease[J]. Ageing Res Rev, 2021, 67: 101263.
|
[21] |
Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling[J]. Mitochondrion, 2019, 49: 35-45.
|