• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

酶促自组装分子在肿瘤治疗和成像中的研究进展

任彦炜, 李琦一, 何冰, 李昊逾, 赵丽, 李玉艳

任彦炜, 李琦一, 何冰, 李昊逾, 赵丽, 李玉艳. 酶促自组装分子在肿瘤治疗和成像中的研究进展[J]. 中国药科大学学报, 2023, 54(4): 431-442. DOI: 10.11665/j.issn.1000-5048.2023020602
引用本文: 任彦炜, 李琦一, 何冰, 李昊逾, 赵丽, 李玉艳. 酶促自组装分子在肿瘤治疗和成像中的研究进展[J]. 中国药科大学学报, 2023, 54(4): 431-442. DOI: 10.11665/j.issn.1000-5048.2023020602
REN Yanwei, LI Qiyi, HE Bing, LI Haoyu, ZHAO Li, LI Yuyan. Research progress of enzyme-instructed self-assembly molecules for tumor therapy and imaging[J]. Journal of China Pharmaceutical University, 2023, 54(4): 431-442. DOI: 10.11665/j.issn.1000-5048.2023020602
Citation: REN Yanwei, LI Qiyi, HE Bing, LI Haoyu, ZHAO Li, LI Yuyan. Research progress of enzyme-instructed self-assembly molecules for tumor therapy and imaging[J]. Journal of China Pharmaceutical University, 2023, 54(4): 431-442. DOI: 10.11665/j.issn.1000-5048.2023020602

酶促自组装分子在肿瘤治疗和成像中的研究进展

基金项目: 江苏省社会发展面上项目资助(No.BE20200695)

Research progress of enzyme-instructed self-assembly molecules for tumor therapy and imaging

Funds: This study was supported by the Key Research & Development Program of Jiangsu Province (No.BE2020695)
  • 摘要: 自组装是生物大分子结构形成的基础方式之一。酶促自组装(enzyme-instructed self-assembly,EISA)借助工具酶,在特定的部位实现小分子化合物向超分子纳米结构的转换,成为药物开发的全新策略。近年来,EISA在恶性肿瘤的治疗和成像领域取得了长足的进步,实现了纳米结构的精确调控和肿瘤靶向。本文综述了EISA在肿瘤诊疗领域的最新进展,工具酶如碱性磷酸酶、去乙酰化酶、酪氨酸酶、γ-谷氨酰转肽酶和胱天蛋白酶3等的作用与特点,总结了在肿瘤治疗中EISA靶向多种细胞器的研究现状,并介绍了EISA在肿瘤成像中的运用,为EISA策略在肿瘤诊疗中的应用研究提供参考。
    Abstract: Self-assembly is the basis of the formation of biological macromolecular structure. Enzyme-instructed self-assembly (EISA) with the help of tool enzymes, realizing the conversion of small molecular compounds to supramolecular nanostructures at specific sites, become a new strategy for drug discovery.In recent years, the exploration of EISA for developing malignant cancer therapy and imaging has made considerable progress, achieving the precise regulation and tumor targeting of nanostructures. This paper reviews the latest progress of EISA in the field of tumor diagnosis and treatment, the functions and characteristics of tool enzymes such as alkaline phosphatase, sirtuin, tyrosinase, γ-glutamyltranspeptidase and caspase-3,summarizes the research status of EISA targeting multiple organelles in tumor therapy, and introduces the application of EISA in tumor imaging, aiming to provide reference forthe research of EISA strategy in tumor diagnosis and treatment.
  • [1] . Science, 2002, 295(5564): 2418-2421.
    [2] Whitesides GM, Mathias JP, Seto CT. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures[J]. Science, 1991, 254(5036): 1312-1319.
    [3] Dergham M, Lin SM, Geng J. Supramolecular self-assembly in living cells[J]. Angew Chem Int Ed Engl, 2022, 61(18): e202114267.
    [4] Sagalowicz L, Michel M, Blank I, et al. Self-assembly in food—a concept for structure formation inspired by nature[J]. Curr Opin Colloid Interface Sci, 2017, 28: 87-95.
    [5] Müller MM, Muir TW. Histones: at the crossroads of peptide and protein chemistry[J]. Chem Rev, 2015, 115(6): 2296-2349.
    [6] Bugyi B, Carlier MF. Control of actin filament treadmilling in cell motility[J]. Annu Rev Biophys, 2010, 39: 449-470.
    [7] Wang YQ, Bai H, Miao YX, et al. Tailoring a near-infrared macrocyclization scaffold allows the control of in situ self-assembly for photoacoustic/PET bimodal imaging[J]. Angew Chem Int Ed Engl, 2022, 61(14): e202200369.
    [8] Wang ZX, Guo YR, Xianyu YL. Applications of self-assembly strategies in immunoassays: a review[J]. Coord Chem Rev, 2023, 478: 214974.
    [9] Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery[J]. Adv Drug Deliv Rev, 2021, 172: 275-295.
    [10] Yi MH, Guo JQ, He HJ, et al. Phosphobisaromatic motifs enable rapid enzymatic self-assembly and hydrogelation of short peptides[J]. Soft Matter, 2021, 17(38): 8590-8594.
    [11] Vendruscolo M, Dobson CM. Structural biology. Dynamic visions of enzymatic reactions[J]. Science, 2006, 313(5793): 1586-1587.
    [12] Zhan J, Wang YH, Ma SD, et al. Organelle-inspired supramolecular nanomedicine to precisely abolish liver tumor growth and metastasis[J]. Bioact Mater, 2022, 9: 120-133.
    [13] Wu CF, Zhang R, Du W, et al. Alkaline phosphatase-triggered self-assembly of near-infrared nanoparticles for the enhanced photoacoustic imaging of tumors[J]. Nano Lett, 2018, 18(12): 7749-7754.
    [14] Kim BJ, Xu B. Enzyme-instructed self-assembly for cancer therapy and imaging[J]. Bioconjug Chem, 2020, 31(3): 492-500.
    [15] Wang DY, Hu YX, Ye PD. Activatable multimodal probes for in vivo imaging and theranostics[J]. Angew Chem Int Ed, 2022, 61(50): e202209512.
    [16] Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer[J]. Adv Drug Deliv Rev, 2014, 66: 26-41.
    [17] He HJ, Tan WY, Guo JQ, et al. Enzymatic noncovalent synthesis[J]. Chem Rev, 2020, 120(18): 9994-10078.
    [18] Wang JY, Li H, Xu B. Biological functions of supramolecular assemblies of small molecules in cellular environment[J]. RSC Chem Biol, 2021, 2(2): 289-305.
    [19] Yang Z, Gu H, Fu D, et al. Enzymatic formation of supramolecular hydrogels[J]. Adv Mater, 2004, 16(16): 1440-1444.
    [20] Chen YX, Zhang WW, Ding YH, et al. Preorganization boosts the artificial esterase activity of a self-assembling peptide[J]. Sci China Chem, 2021, 64(9): 1554-1559.
    [21] He HJ, Guo JQ, Xu JS, et al. Dynamic continuum of nanoscale peptide assemblies facilitates endocytosis and endosomal escape[J]. Nano Lett, 2021, 21(9): 4078-4085.
    [22] Zhou J, Du XW, Wang JQ, et al. Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials[J]. Front Chem Sci Eng, 2017, 11(4): 509-515.
    [23] Yang L, Peltier R, Zhang MM, et al.Desuccinylation-triggered peptide self-assembly: live cell imaging of SIRT5 activity and mitochondrial activity modulation[J]. J Am Chem Soc, 2020, 142(42): 18150-18159.
    [24] Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 225-238.
    [25] Wang YY, Chen H, Zha XM. Overview of SIRT5 as a potential therapeutic target: structure, function and inhibitors[J]. Eur J Med Chem, 2022, 236: 114363.
    [26] Yang X, Wang Z, Li X, et al. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation[J]. Cancer Res, 2018, 78(2): 372-386.
    [27] Taylor SW. Chemoenzymatic synthesis of peptidyl 3, 4-dihydroxyphenylalanine for structure-activity relationships in marine invertebrate polypeptides[J]. Anal Biochem, 2002, 302(1): 70-74.
    [28] Lai XL, Wichers HJ, Soler-Lopez M, et al. Structure and function of human tyrosinase and tyrosinase-related proteins[J]. Chemistry, 2018, 24(1): 47-55.
    [29] Choi YS, Yang YJ, Yang B, et al. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli[J]. Microb Cell Fact, 2012, 11: 139.
    [30] Sun M, Wang CY, Lv MC, et al. Intracellular self-assembly of peptides to induce apoptosis against drug-resistant melanoma[J]. J Am Chem Soc, 2022, 144(16): 7337-7345.
    [31] Tate SS, Meister A. Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione[J]. J Biol Chem, 1974, 249(23): 7593-7602.
    [32] Pompella A, De Tata V, Paolicchi A, et al. Expression of gamma-glutamyltransferase in cancer cells and its significance in drug resistance[J]. Biochem Pharmacol, 2006, 71(3): 231-238.
    [33] Hai ZJ, Wu JJ, Wang L, et al. Bioluminescence sensing of γ-glutamyltranspeptidase activity in vitro and in vivo[J]. Anal Chem, 2017, 89(13): 7017-7021.
    [34] Obara R, Kamiya M, Tanaka Y, et al. γ-glutamyltranspeptidase (GGT)-activatable fluorescence probe for durable tumor imaging[J]. Angew Chem Int Ed Engl, 2021, 60(4): 2125-2129.
    [35] Ye SQ, Wang SJ, Gao DY, et al. A new γ-glutamyltranspeptidase-based intracellular self-assembly of fluorine-18 labeled probe for enhancing PET imaging in tumors[J]. Bioconjug Chem, 2020, 31(2): 174-181.
    [36] Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(6): 118688.
    [37] Wang YQ, Hu XM, Weng JH, et al. A photoacoustic probe for the imaging of tumor apoptosis by caspase-mediated macrocyclization and self-assembly[J]. Angew Chem Int Ed Engl, 2019, 58(15): 4886-4890.
    [38] Li X, Cao CY, Wei P, et al. Self-assembly of amphiphilic peptides for recognizing high furin-expressing cancer cells[J]. ACS Appl Mater Interfaces, 2019, 11(13): 12327-12334.
    [39] Kim BJ, Fang Y, He HJ, et al. Trypsin-instructed self-assembly on endoplasmic reticulum for selectively inhibiting cancer cells: dedicated to Professor George M. Whitesides on the occasion of his 80th birthday[J]. Adv Healthc Mater, 2021, 10(4): e2000416.
    [40] Saminathan A, Zajac M, Anees P, et al. Organelle-level precision with next-generation targeting technologies[J]. Nat Rev Mater, 2022, 7(5): 355-371.
    [41] Zielonka J, Joseph J, Sikora A, et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications[J]. Chem Rev, 2017, 117(15): 10043-10120.
    [42] Wang HM, Feng Z, Wang YZ, et al. Integrating enzymatic self-assembly and mitochondria targeting for selectively killing cancer cells without acquired drug resistance[J]. J Am Chem Soc, 2016, 138(49): 16046-16055.
    [43] He HJ, Wang JQ, Wang HM, et al. Enzymatic cleavage of branched peptides for targeting mitochondria[J]. J Am Chem Soc, 2018, 140(4): 1215-1218.
    [44] Tan WY, Zhang QX, Wang JQ, et al. Enzymatic assemblies of thiophosphopeptides instantly target Golgi apparatus and selectively kill cancer cells[J]. Angew Chem Int Ed Engl, 2021, 60(23): 12796-12801.
    [45] Tan WY, Zhang QX, Qui?ones-Frías MC, et al. Enzyme-responsive peptide thioesters for targeting Golgi apparatus[J]. J Am Chem Soc, 2022, 144(15): 6709-6713.
    [46] Behera A, Padhi S. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review[J].Environ Chem Lett, 2020, 18(5): 1557-1567.
    [47] Pan LM, Liu JN, Shi JL. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics[J]. Chem Soc Rev, 2018, 47(18): 6930-6946.
    [48] Liu S, Zhang QX, He HJ, et al. Intranuclear nanoribbons for selective killing of osteosarcoma cells[J]. Angew Chem Int Ed Engl, 2022, 61(44): e202210568.
    [49] Liu S, Zhang QX, Shy AN, et al. Enzymatically forming intranuclear peptide assemblies for selectively killing human induced pluripotent stem cells[J]. J Am Chem Soc, 2021, 143(38): 15852-15862.
    [50] Bonam SR, Wang FJ, Muller S. Lysosomes as a therapeutic target[J]. Nat Rev Drug Discov, 2019, 18(12): 923-948.
    [51] Wu CF, Wang CC, Zhang T, et al. Lysosome-targeted and fluorescence-turned “on” cytotoxicity induced by alkaline phosphatase-triggered self-assembly[J]. Adv Healthc Mater, 2022, 11(1): e2101346.
    [52] Yang XJ, Lu HL, Tao YH, et al. Spatiotemporal control over chemical assembly in living cells by integration of acid-catalyzed hydrolysis and enzymatic reactions[J]. Angew Chem Int Ed Engl, 2021, 60(44): 23797-23804.
    [53] Shi YY, Wang SJ, Wu JL, et al. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application[J]. J Control Release, 2021, 329: 337-352.
    [54] Zhou ZX, Lu ZR. Molecular imaging of the tumor microenvironment[J]. Adv Drug Deliv Rev, 2017, 113: 24-48.
    [55] Dindere ME, Tanca A, Rusu M, et al. Intraoperative tumor detection using pafolacianine[J]. Int J Mol Sci, 2022, 23(21): 12842.
    [56] Tanyi JL, Randall LM, Chambers SK, et al. A phase III study of pafolacianine injection (OTL38) for intraoperative imaging of folate receptor-positive ovarian cancer (study 006)[J]. J Clin Oncol, 2023, 41(2): 276-284.
    [57] Yan RQ, Hu YX, Liu F, et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly[J]. J Am Chem Soc, 2019, 141(26): 10331-10341.
    [58] Hu YX, Miao YX, Zhang JY, et al. Alkaline phosphatase enabled fluorogenic reaction and in situ coassembly of near-infrared and radioactive nanoparticles for in vivo imaging[J]. Nano Lett, 2021, 21(24): 10377-10385.
    [59] Hu YX, Zhang JY, Miao YX, et al. Enzyme-mediated in situ self-assembly promotes in vivo bioorthogonal reaction for pretargeted multimodality imaging[J]. Angew Chem Int Ed Engl, 2021, 60(33): 18082-18093.
    [60] Chen ZX, Chen M, Zhou KX, et al. Pre-targeted imaging of protease activity through in situ assembly of nanoparticles[J]. Angew Chem Int Ed Engl, 2020, 59(20): 7864-7870.
计量
  • 文章访问数:  250
  • HTML全文浏览量:  32
  • PDF下载量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-05
  • 修回日期:  2023-09-06
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回