[1] |
. Science, 2002, 295(5564): 2418-2421.
|
[2] |
Whitesides GM, Mathias JP, Seto CT. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures[J]. Science, 1991, 254(5036): 1312-1319.
|
[3] |
Dergham M, Lin SM, Geng J. Supramolecular self-assembly in living cells[J]. Angew Chem Int Ed Engl, 2022, 61(18): e202114267.
|
[4] |
Sagalowicz L, Michel M, Blank I, et al. Self-assembly in food—a concept for structure formation inspired by nature[J]. Curr Opin Colloid Interface Sci, 2017, 28: 87-95.
|
[5] |
Müller MM, Muir TW. Histones: at the crossroads of peptide and protein chemistry[J]. Chem Rev, 2015, 115(6): 2296-2349.
|
[6] |
Bugyi B, Carlier MF. Control of actin filament treadmilling in cell motility[J]. Annu Rev Biophys, 2010, 39: 449-470.
|
[7] |
Wang YQ, Bai H, Miao YX, et al. Tailoring a near-infrared macrocyclization scaffold allows the control of in situ self-assembly for photoacoustic/PET bimodal imaging[J]. Angew Chem Int Ed Engl, 2022, 61(14): e202200369.
|
[8] |
Wang ZX, Guo YR, Xianyu YL. Applications of self-assembly strategies in immunoassays: a review[J]. Coord Chem Rev, 2023, 478: 214974.
|
[9] |
Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery[J]. Adv Drug Deliv Rev, 2021, 172: 275-295.
|
[10] |
Yi MH, Guo JQ, He HJ, et al. Phosphobisaromatic motifs enable rapid enzymatic self-assembly and hydrogelation of short peptides[J]. Soft Matter, 2021, 17(38): 8590-8594.
|
[11] |
Vendruscolo M, Dobson CM. Structural biology. Dynamic visions of enzymatic reactions[J]. Science, 2006, 313(5793): 1586-1587.
|
[12] |
Zhan J, Wang YH, Ma SD, et al. Organelle-inspired supramolecular nanomedicine to precisely abolish liver tumor growth and metastasis[J]. Bioact Mater, 2022, 9: 120-133.
|
[13] |
Wu CF, Zhang R, Du W, et al. Alkaline phosphatase-triggered self-assembly of near-infrared nanoparticles for the enhanced photoacoustic imaging of tumors[J]. Nano Lett, 2018, 18(12): 7749-7754.
|
[14] |
Kim BJ, Xu B. Enzyme-instructed self-assembly for cancer therapy and imaging[J]. Bioconjug Chem, 2020, 31(3): 492-500.
|
[15] |
Wang DY, Hu YX, Ye PD. Activatable multimodal probes for in vivo imaging and theranostics[J]. Angew Chem Int Ed, 2022, 61(50): e202209512.
|
[16] |
Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer[J]. Adv Drug Deliv Rev, 2014, 66: 26-41.
|
[17] |
He HJ, Tan WY, Guo JQ, et al. Enzymatic noncovalent synthesis[J]. Chem Rev, 2020, 120(18): 9994-10078.
|
[18] |
Wang JY, Li H, Xu B. Biological functions of supramolecular assemblies of small molecules in cellular environment[J]. RSC Chem Biol, 2021, 2(2): 289-305.
|
[19] |
Yang Z, Gu H, Fu D, et al. Enzymatic formation of supramolecular hydrogels[J]. Adv Mater, 2004, 16(16): 1440-1444.
|
[20] |
Chen YX, Zhang WW, Ding YH, et al. Preorganization boosts the artificial esterase activity of a self-assembling peptide[J]. Sci China Chem, 2021, 64(9): 1554-1559.
|
[21] |
He HJ, Guo JQ, Xu JS, et al. Dynamic continuum of nanoscale peptide assemblies facilitates endocytosis and endosomal escape[J]. Nano Lett, 2021, 21(9): 4078-4085.
|
[22] |
Zhou J, Du XW, Wang JQ, et al. Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials[J]. Front Chem Sci Eng, 2017, 11(4): 509-515.
|
[23] |
Yang L, Peltier R, Zhang MM, et al.Desuccinylation-triggered peptide self-assembly: live cell imaging of SIRT5 activity and mitochondrial activity modulation[J]. J Am Chem Soc, 2020, 142(42): 18150-18159.
|
[24] |
Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 225-238.
|
[25] |
Wang YY, Chen H, Zha XM. Overview of SIRT5 as a potential therapeutic target: structure, function and inhibitors[J]. Eur J Med Chem, 2022, 236: 114363.
|
[26] |
Yang X, Wang Z, Li X, et al. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation[J]. Cancer Res, 2018, 78(2): 372-386.
|
[27] |
Taylor SW. Chemoenzymatic synthesis of peptidyl 3, 4-dihydroxyphenylalanine for structure-activity relationships in marine invertebrate polypeptides[J]. Anal Biochem, 2002, 302(1): 70-74.
|
[28] |
Lai XL, Wichers HJ, Soler-Lopez M, et al. Structure and function of human tyrosinase and tyrosinase-related proteins[J]. Chemistry, 2018, 24(1): 47-55.
|
[29] |
Choi YS, Yang YJ, Yang B, et al. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli[J]. Microb Cell Fact, 2012, 11: 139.
|
[30] |
Sun M, Wang CY, Lv MC, et al. Intracellular self-assembly of peptides to induce apoptosis against drug-resistant melanoma[J]. J Am Chem Soc, 2022, 144(16): 7337-7345.
|
[31] |
Tate SS, Meister A. Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione[J]. J Biol Chem, 1974, 249(23): 7593-7602.
|
[32] |
Pompella A, De Tata V, Paolicchi A, et al. Expression of gamma-glutamyltransferase in cancer cells and its significance in drug resistance[J]. Biochem Pharmacol, 2006, 71(3): 231-238.
|
[33] |
Hai ZJ, Wu JJ, Wang L, et al. Bioluminescence sensing of γ-glutamyltranspeptidase activity in vitro and in vivo[J]. Anal Chem, 2017, 89(13): 7017-7021.
|
[34] |
Obara R, Kamiya M, Tanaka Y, et al. γ-glutamyltranspeptidase (GGT)-activatable fluorescence probe for durable tumor imaging[J]. Angew Chem Int Ed Engl, 2021, 60(4): 2125-2129.
|
[35] |
Ye SQ, Wang SJ, Gao DY, et al. A new γ-glutamyltranspeptidase-based intracellular self-assembly of fluorine-18 labeled probe for enhancing PET imaging in tumors[J]. Bioconjug Chem, 2020, 31(2): 174-181.
|
[36] |
Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(6): 118688.
|
[37] |
Wang YQ, Hu XM, Weng JH, et al. A photoacoustic probe for the imaging of tumor apoptosis by caspase-mediated macrocyclization and self-assembly[J]. Angew Chem Int Ed Engl, 2019, 58(15): 4886-4890.
|
[38] |
Li X, Cao CY, Wei P, et al. Self-assembly of amphiphilic peptides for recognizing high furin-expressing cancer cells[J]. ACS Appl Mater Interfaces, 2019, 11(13): 12327-12334.
|
[39] |
Kim BJ, Fang Y, He HJ, et al. Trypsin-instructed self-assembly on endoplasmic reticulum for selectively inhibiting cancer cells: dedicated to Professor George M. Whitesides on the occasion of his 80th birthday[J]. Adv Healthc Mater, 2021, 10(4): e2000416.
|
[40] |
Saminathan A, Zajac M, Anees P, et al. Organelle-level precision with next-generation targeting technologies[J]. Nat Rev Mater, 2022, 7(5): 355-371.
|
[41] |
Zielonka J, Joseph J, Sikora A, et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications[J]. Chem Rev, 2017, 117(15): 10043-10120.
|
[42] |
Wang HM, Feng Z, Wang YZ, et al. Integrating enzymatic self-assembly and mitochondria targeting for selectively killing cancer cells without acquired drug resistance[J]. J Am Chem Soc, 2016, 138(49): 16046-16055.
|
[43] |
He HJ, Wang JQ, Wang HM, et al. Enzymatic cleavage of branched peptides for targeting mitochondria[J]. J Am Chem Soc, 2018, 140(4): 1215-1218.
|
[44] |
Tan WY, Zhang QX, Wang JQ, et al. Enzymatic assemblies of thiophosphopeptides instantly target Golgi apparatus and selectively kill cancer cells[J]. Angew Chem Int Ed Engl, 2021, 60(23): 12796-12801.
|
[45] |
Tan WY, Zhang QX, Qui?ones-Frías MC, et al. Enzyme-responsive peptide thioesters for targeting Golgi apparatus[J]. J Am Chem Soc, 2022, 144(15): 6709-6713.
|
[46] |
Behera A, Padhi S. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review[J].Environ Chem Lett, 2020, 18(5): 1557-1567.
|
[47] |
Pan LM, Liu JN, Shi JL. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics[J]. Chem Soc Rev, 2018, 47(18): 6930-6946.
|
[48] |
Liu S, Zhang QX, He HJ, et al. Intranuclear nanoribbons for selective killing of osteosarcoma cells[J]. Angew Chem Int Ed Engl, 2022, 61(44): e202210568.
|
[49] |
Liu S, Zhang QX, Shy AN, et al. Enzymatically forming intranuclear peptide assemblies for selectively killing human induced pluripotent stem cells[J]. J Am Chem Soc, 2021, 143(38): 15852-15862.
|
[50] |
Bonam SR, Wang FJ, Muller S. Lysosomes as a therapeutic target[J]. Nat Rev Drug Discov, 2019, 18(12): 923-948.
|
[51] |
Wu CF, Wang CC, Zhang T, et al. Lysosome-targeted and fluorescence-turned “on” cytotoxicity induced by alkaline phosphatase-triggered self-assembly[J]. Adv Healthc Mater, 2022, 11(1): e2101346.
|
[52] |
Yang XJ, Lu HL, Tao YH, et al. Spatiotemporal control over chemical assembly in living cells by integration of acid-catalyzed hydrolysis and enzymatic reactions[J]. Angew Chem Int Ed Engl, 2021, 60(44): 23797-23804.
|
[53] |
Shi YY, Wang SJ, Wu JL, et al. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application[J]. J Control Release, 2021, 329: 337-352.
|
[54] |
Zhou ZX, Lu ZR. Molecular imaging of the tumor microenvironment[J]. Adv Drug Deliv Rev, 2017, 113: 24-48.
|
[55] |
Dindere ME, Tanca A, Rusu M, et al. Intraoperative tumor detection using pafolacianine[J]. Int J Mol Sci, 2022, 23(21): 12842.
|
[56] |
Tanyi JL, Randall LM, Chambers SK, et al. A phase III study of pafolacianine injection (OTL38) for intraoperative imaging of folate receptor-positive ovarian cancer (study 006)[J]. J Clin Oncol, 2023, 41(2): 276-284.
|
[57] |
Yan RQ, Hu YX, Liu F, et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly[J]. J Am Chem Soc, 2019, 141(26): 10331-10341.
|
[58] |
Hu YX, Miao YX, Zhang JY, et al. Alkaline phosphatase enabled fluorogenic reaction and in situ coassembly of near-infrared and radioactive nanoparticles for in vivo imaging[J]. Nano Lett, 2021, 21(24): 10377-10385.
|
[59] |
Hu YX, Zhang JY, Miao YX, et al. Enzyme-mediated in situ self-assembly promotes in vivo bioorthogonal reaction for pretargeted multimodality imaging[J]. Angew Chem Int Ed Engl, 2021, 60(33): 18082-18093.
|
[60] |
Chen ZX, Chen M, Zhou KX, et al. Pre-targeted imaging of protease activity through in situ assembly of nanoparticles[J]. Angew Chem Int Ed Engl, 2020, 59(20): 7864-7870.
|