• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

生物膜仿生纳米制剂研究进展

张强, 罗曦, 包永睿, 王帅, 李天娇, 孟宪生

张强, 罗曦, 包永睿, 王帅, 李天娇, 孟宪生. 生物膜仿生纳米制剂研究进展[J]. 中国药科大学学报, 2023, 54(5): 544-552. DOI: 10.11665/j.issn.1000-5048.2023020603
引用本文: 张强, 罗曦, 包永睿, 王帅, 李天娇, 孟宪生. 生物膜仿生纳米制剂研究进展[J]. 中国药科大学学报, 2023, 54(5): 544-552. DOI: 10.11665/j.issn.1000-5048.2023020603
ZHANG Qiang, LUO Xi, BAO Yongrui, WANG Shuai, LI Tianjiao, MENG Xiansheng. Research progress in biomimetic nano formulations of biofilms[J]. Journal of China Pharmaceutical University, 2023, 54(5): 544-552. DOI: 10.11665/j.issn.1000-5048.2023020603
Citation: ZHANG Qiang, LUO Xi, BAO Yongrui, WANG Shuai, LI Tianjiao, MENG Xiansheng. Research progress in biomimetic nano formulations of biofilms[J]. Journal of China Pharmaceutical University, 2023, 54(5): 544-552. DOI: 10.11665/j.issn.1000-5048.2023020603

生物膜仿生纳米制剂研究进展

基金项目: 辽宁省中医药现代化研究创新团队项目(No.LT2017015)

Research progress in biomimetic nano formulations of biofilms

Funds: This study was supported by the Project of Traditional Chinese Medicine Modernization Research and Innovation Team of Liaoning Province (No.LT2017015)
  • 摘要: 生物膜仿生纳米制剂有低免疫原性、高靶向性以及良好的生物相容性,且可避免被内皮网状系统清除,使其在体内血液循环时间更长。本文主要综述了生物膜仿生纳米制剂的主要类型及各自的优缺点,包括肿瘤细胞膜、红细胞膜、血小板膜、白细胞膜、干细胞膜、细胞外囊泡(外泌体、微囊泡及凋亡小体)、内质网膜以及复合生物膜等。同时针对生物膜仿生纳米制剂的研究现状,对其面临的挑战以及未来发展前景进行了展望,以期为生物膜仿生纳米制剂的进一步研究提供思路。
    Abstract: Biomimetic nano formulations of biofilms have low immunogenicity, high targeting, and good biocompatibility, and can avoid being cleared by the endothelial reticular system, thus with in longer blood circulation time in the body.This article mainly reviews the main types as well as advantages and disadvantages of biomimetic nano formulations of biofilms, including tumor cell membranes, red blood cell membranes, platelet membranes, white blood cell membranes, stem cell membranes, extracellular vesicles (exosomes, microvesicles, and apoptotic bodies), endoplasmic reticulum membranes, and composite biofilms, with also a prospect of the challenges facing biomimetic nano formulations of biofilms and their future development based on their current research status, aiming to provide some insight for further research on biomimetic nano formulations of biofilms.
  • [1] Sui HT, Jia T, Guo Y, et al. Application progress of live attenuated varicella vaccine[J]. Chin J Viral Dis (中国病毒病杂志), 2022, 12(4): 316-320.
    [2] Yi XC, Zhang LX, Zhang YN. Progress in plague treatment strategies[J]. Chin J Zoonoses (中国人兽共患病学报), 2022, 38(9): 830-838.
    [3] Sun CK, Chen X, Cheng H, et al. Advances of research on oxygen-enhancing nano-delivery system for photodynamic therapy[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(4): 387-397.
    [4] Hu CM, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proc Natl Acad Sci U S A, 2011, 108(27): 10980-10985.
    [5] Xu JP, Xu QW, Wang XQ, et al. Advances in biomimetic drug delivery systems based on platelet and platelet membrane[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(6): 653-659.
    [6] Wang JT, Mai ZS, Ding XW, et al. Research progress of nanometer drug delivery system based on tumor cell membrane[J]. Med J Wuhan Univ (武汉大学学报 医学版), 2020, 41(6): 944-948.
    [7] Tian R, Wang ZY, Niu RF. Research progress in cell biomimetic drug delivery systems for tumor therapy[J]. Chin J Clin Oncol (中国肿瘤临床), 2021, 48(13): 690-694.
    [8] Leng JK. The study on construction and anti-tumor effect of tumor cell membrane modified polydopamine nanoparticle drug-delivery system(肿瘤细胞膜修饰聚多巴胺纳米粒药物递送系统的构建及抗肿瘤研究)[D]. Dalian: Dalian University of Technology, 2022.
    [9] Yang HB, Yu ZY, Yan J, et al. Construction and evaluation of a nano-drug delivery system camouflaged by cancer cell membrane[J]. J Shanxi Med Univ (山西医科大学学报), 2022, 53(2): 127-133.
    [10] Wang T. Nanoparticles wrapped in cancer cell membranes for targeted chemotherapy combined with photothermal therapy(癌细胞膜包裹的仿生纳米粒用于靶向化疗联合光热治疗)[D]. Zhengzhou: Zhengzhou University, 2021.
    [11] Meng XZ, Wang JJ, Zhou JD, et al. Tumor cell membrane-based peptide delivery system targeting the tumor microenvironment for cancer immunotherapy and diagnosis[J]. Acta Biomater, 2021, 127: 266-275.
    [12] Tang WX, Li X, Lyu M, et al. Cancer cell membrane biomimetic mesoporous nanozyme system with efficient ROS generation for antitumor chemoresistance[J]. Oxid Med Cell Longev, 2022, 5089857.
    [13] Wang HJ, Wang K, He LH, et al. Engineering antigen as photosensitiser nanocarrier to facilitate ROS triggered immune cascade for photodynamic immunotherapy[J]. Biomaterials, 2020, 244: 119964.
    [14] Chen Z, Zhao PF, Luo ZY, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy[J]. ACS Nano, 2016, 10(11): 10049-10057.
    [15] Ji Y, Zhang ZT, Hou WJ, et al. Enhanced antitumor effect of icariin nanoparticles coated with iRGD functionalized erythrocyte membrane[J]. Eur J Pharmacol, 2022, 931: 175225.
    [16] Liu X. Investigation on the anti-tumor activity of MLN4924 nano drug delivery system based on platelet membrane bionics(基于血小板膜仿生的MLN4924纳米药物递送系统的体外抗肿瘤活性研究)[D]. Zhengzhou: Zhengzhou University, 2021.
    [17] Hu CM, Fang RH, Wang KC, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121.
    [18] Poudel K, Banstola A, Gautam M, et al. Macrophage-membrane-camouflaged disintegrable and excretable nanoconstruct for deep tumor penetration[J]. ACS Appl Mater Interfaces, 2020, 12(51): 56767-56781.
    [19] Xue JW, Zhao ZK, Zhang L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol, 2017, 12(7): 692-700.
    [20] Zhang LR, Li RT, Chen H, et al. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer[J]. Int J Nanomedicine, 2017, 12: 2129-2142.
    [21] Xie LX, Zhang CW, Liu M, et al. Nucleus-targeting manganese dioxide nanoparticles coated with the human umbilical cord mesenchymal stem cell membrane for cancer cell therapy[J]. ACS Appl Mater Interfaces, 2023, 15(8): 10541-10553.
    [22] Wang SY. Stem cell membrane coated isotretinoin for acne treatment(干细胞膜包裹异维A酸治疗痤疮的研究)[D]. Chang chun: Jilin University, 2021.
    [23] Fan YF, Cheng J, Xu Y, et al. 5Z-7-oxozeaenol Delivered by Atdc5-derived Exosomes for the Treatment of Osteoarthritis[J]. Chin J BiochemMol Biol (中国生物化学与分子生物学报), 2023, 39(5): 706-714.
    [24] Sheng SP. Study on the application of functionalized apoptososome drug delivery system for precise delivery of tumors and photothermal immunotherapy(功能化凋亡小体载药系统用于肿瘤精准递送及光热—免疫联合治疗的研究)[D]. Beijing: Peking Union Medical College, 2022.
    [25] Qiu C, Han HH, Sun J, et al. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes[J]. Nat Commun, 2019, 10(1): 2702.
    [26] Kuhn V, Diederich L, 4thKeller TCS, et al. Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, Anemia[J]. Antioxid Redox Signal, 2017, 26(13): 718-742.
    [27] Zheng BD, Xiao MT. Red blood cell membrane nanoparticles for tumor phototherapy[J]. Colloids Surf B Biointerfaces, 2022, 220: 112895.
    [28] Gong JQ, Zhao JN, Wang YH, et al. Research progress on cell membrane-derived biomimetic drug delivery systems for cancer therapy[J]. Her Med (医药导报), 2022, 41(12): 1810-1815.
    [29] Huang JW, Jiang CY, Luo YY, et al. A novel drug delivery system—red blood cell membranes biomimetic nanoparticles[J]. J Zhongshan Univ Nat Sci Ed (中山大学学报 自然科学版), 2019, 58(5): 114-118.
    [30] Wang M, Yan WQ, Chu ML, et al. Erythrocyte membrane-wrapped magnetic nanotherapeutic agents for reduction and removal of blood Cr(VI)[J]. ACS Appl Mater Interfaces, 2020, 12(25): 28014-28023.
    [31] Miao YQ, Yang YT, Guo LM, et al. Cell membrane-camouflaged nanocarriers with biomimetic deformability of erythrocytes for ultralong circulation and enhanced cancer therapy[J]. ACS Nano, 2022, 16(4): 6527-6540.
    [32] Thon JN, Italiano JE. Platelets: production, morphology and ultrastructure[J]. Handb Exp Pharmacol, 2012(210): 3-22.
    [33] Yue XT. Construction of platelet membrane modified PLGA-MSCs biomimetic nanoparticles and its repair effect on damaged endothelium(血小板膜修饰的间充质基质细胞-PLGA仿生纳米颗粒的构建及对损伤内皮的修复作用分析)[D]. Zhengzhou: Zhengzhou University, 2021.
    [34] Ren DD. Construction of drug loading platform of platelet membrane bionic photothermal/chemotherapy synergistic therapy and its anti-tumor effect(血小板膜仿生的光热/化疗协同治疗载药平台的构建及抗肿瘤效果研究)[D]. Shanghai: Donghua University, 2021.
    [35] Zhang SY, He M, Sun C, et al. Construction of macrophage membrane-coated albumin nanoparticles and its drug delivery evaluation for glioma in vitro[J]. Chin Pharm J(中国药学杂志), 2022, 57(8): 636-644.
    [36] Lu CH, Zheng JP, Ding YN, et al. Cepharanthine loaded nanoparticles coated with macrophage membranes for lung inflammation therapy[J]. Drug Deliv, 2021, 28(1): 2582-2593.
    [37] Zhang C, Zhang L, Wu W, et al. Artificial super neutrophils for inflammation targeting and HClO generation against tumors and infections[J]. Adv Mater, 2019, 31(19): e1901179.
    [38] Kallert SM, Darbre S, Bonilla WV, et al. Replicating viral vector platform exploits alarmin signals for potent CD8+ T cell-mediated tumour immunotherapy[J]. Nat Commun, 2017, 8: 15327.
    [39] Liu B, Cao W, Cheng J, et al. Human natural killer cells for targeting delivery of gold nanostars and bimodal imaging directed photothermal/photodynamic therapy and immunotherapy[J]. Cancer Biol Med, 2019, 16(4): 756-770.
    [40] Deng GJ, Sun ZH, Li SP, et al. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth[J]. ACS Nano, 2018, 12(12): 12096-12108.
    [41] Wu LY, Zhang FQ, Wei ZH, et al. Magnetic delivery of Fe3O4@polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment[J]. Biomater Sci, 2018, 6(10): 2714-2725.
    [42] Pei XT. Stem cell biology (干细胞生物学) [M]. Beijing: Science Press, 2003: 4-15.
    [43] Muslimov AR, Timin AS, Bichaykina VR, et al. Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with light-responsive submicron sized carriers[J]. Biomater Sci, 2020, 8(4): 1137-1147.
    [44] Li W, Tong JL, Xia GM, et al. Preparation of mesenchymal stem cell membrane-biomimetic nano drug and its anti-tumor activity[J]. Chin J Cancer Prev Treat (中华肿瘤防治杂志), 2021, 28(10): 719-726.
    [45] Mu XP, Li J, Yan SH, et al. siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy[J]. ACS Biomater Sci Eng, 2018, 4(11): 3895-3905.
    [46] Wu HH. Construction of stem cell membrane derived biomimetic targeting carrier and its application in ischemic stroke therapy(基于干细胞膜的仿生靶向载体的构建及其对缺血性脑卒中治疗的研究)[D]. Hangzhou: Zhejiang University, 2022.
    [47] Hu MR, Chen T, Yang CQ, et al. Exosomes in the precision diagnosis and treatment of cancer[J]. J Shanghai Univ Nat Sci Ed (上海大学学报 自然科学版), 2017, 23(2): 161-168.
    [48] Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.
    [49] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383.
    [50] Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30: 255-289.
    [51] Ren WJ, Li ZX, Qiu F. Research progress on traditional Chinese medicine affecting tumor therapy based on exosomes[J]. Chin Tradit Herb Drugs (中草药), 2022, 53(22): 7234-7241.
    [52] Yu B, Wang K, Zhang ML, et al. Therapeutic effect of small extracellular vesicles derived from mesenchymal stem cells on retinal light injury and its mechanism[J]. Chin J Exp Ophthalmol (中华实验眼科杂志), 2023, 41(1): 8-15.
    [53] Liao ZQ, Zhang R, Tang JF. Research progress of endoplasmic reticulum integrated membrane protein SEC62[J]. Chem Life (生命的化学), 2023, 43(2): 247-256.
    [54] Zhao WN, Wang M, Zhang C, et al. Cancer cell membrane targeting and red light-triggered carbon monoxide (CO) release for enhanced chemotherapy[J]. Chem Commun, 2022, 58(61): 8512-8515.
    [55] Hao WY. Hybrid cell membrane-based brain-targeted biomimetic nano-drug delivery system(双膜融合脑靶向仿生纳米递送系统的研究)[D]. Beijing: Academy of Military Sciences, 2022.
    [56] Wang DD, Dong HF, Li M, et al. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma[J]. ACS Nano, 2018, 12(6): 5241-5252.
  • 期刊类型引用(6)

    1. 郭莎,郭翔,高洁,许东泽,梅玉婷,王翠,夏喜杰,李灵坤,贺鹏飞,吴宏宇,吴昊,王兰. 机器学习在抗体制剂不溶性微粒分类识别中的应用. 中国药事. 2024(01): 71-81 . 百度学术
    2. 王茜,李东巧,刘细文. ChatGPT技术在生物医药领域的应用潜力与风险. 中国科学基金. 2024(01): 200-210 . 百度学术
    3. 毛阳涛,田俊龙. 人工智能促进体医融合的价值、现实困境与实施路径. 沈阳体育学院学报. 2024(03): 69-76 . 百度学术
    4. 许情,吕敏,邓虹霄,胡驰,向平,陈航. 机器学习在合成大麻素识别鉴定中的应用进展. 中国药科大学学报. 2024(03): 316-325 . 本站查看
    5. 周隽如,刘智勇. 医学人工智能领域专利技术主题发展态势研究. 世界科技研究与发展. 2024(04): 497-510 . 百度学术
    6. 吴静,周怡雯,宋伟,魏婉清,胡贵鹏,闻建,李晓敏,蒋艳,邱立朋. “六融六优”培养生物与医药专业研究生创新能力的探索与实践. 生物工程学报. 2024(11): 4277-4287 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  342
  • HTML全文浏览量:  15
  • PDF下载量:  484
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-02-05
  • 修回日期:  2023-09-17
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭