Abstract:
Two Hofmann-Martius-like rearrangement products generated in the production of duloxetine hydrochloride were studied. The structures and generation mechanism of the two Hofmann-Martius rearrangement products were analyzed by LC-MS and NMR. The results showed that under the acidic conditions, the naphthol ether bond of duloxetine would break down and the intermediates of naphthol and the alkyl thiophene cation was generated; the two Hofmann-Martius-like rearrangement products were proven to be a pair of isomers produced by nucleophilic substitution between the naphthol intermediate state and the alkyl thiophene cation intermediate state at the ortho or the para position, respectively. The production of two isomers was related to the strong acidic and protic solvent environment. Therefore, in the salting process of duloxetine hydrochloride, the pH value should be controlled in the range of 3-7 and temperature should be maintained below 50 °C, as well as the nonprotic solvent acetone is chosen to avoid generation of the two isomers.