• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于机器学习和分子对接的潜在ATR激酶抑制剂虚拟筛选

严迎潮, 曾晨, 陈亚东

严迎潮, 曾晨, 陈亚东. 基于机器学习和分子对接的潜在ATR激酶抑制剂虚拟筛选[J]. 中国药科大学学报, 2023, 54(3): 323-332. DOI: 10.11665/j.issn.1000-5048.2023022802
引用本文: 严迎潮, 曾晨, 陈亚东. 基于机器学习和分子对接的潜在ATR激酶抑制剂虚拟筛选[J]. 中国药科大学学报, 2023, 54(3): 323-332. DOI: 10.11665/j.issn.1000-5048.2023022802
YAN Yingchao, ZENG Chen, CHEN Yadong. Virtual screening of potential ATR kinase inhibitors based on machine learning and molecular docking[J]. Journal of China Pharmaceutical University, 2023, 54(3): 323-332. DOI: 10.11665/j.issn.1000-5048.2023022802
Citation: YAN Yingchao, ZENG Chen, CHEN Yadong. Virtual screening of potential ATR kinase inhibitors based on machine learning and molecular docking[J]. Journal of China Pharmaceutical University, 2023, 54(3): 323-332. DOI: 10.11665/j.issn.1000-5048.2023022802

基于机器学习和分子对接的潜在ATR激酶抑制剂虚拟筛选

Virtual screening of potential ATR kinase inhibitors based on machine learning and molecular docking

  • 摘要: 从分子库中筛选出潜在活性化合物,是药物发现常用的方法。然而,随着化学空间的不断探索,目前已有超过数十亿分子的化合物库,仅仅依靠分子对接已不足以从超大化合物库中对特定靶点抑制剂进行快速筛选。本研究提出了一种筛选潜在活性化合物的方法,通过计算物理化学性质相似性、构建机器学习预测模型以及分子对接等步骤,对含有55亿分子的候选化合物库进行过滤筛选,最终得到51个具有共济失调毛细血管扩张突变基因和Rad3相关蛋白(ataxia telangiectasia-mutated and Rad3-related,ATR)激酶潜在抑制活性的化合物。该方法为从超大库中快速筛选新颖潜在活性分子提供了有效途径。
    Abstract: Screening potential active compounds from molecular libraries is a common method for drug discovery.However, with the continuous exploration of chemical space, there are already compound libraries with more than billions of molecules, so molecular docking is no longer enough to quickly screen specific target inhibitors from the ultra-large compound libraries.This study proposes a method for screening potential active compounds, which involves filtering and selecting compounds from a candidate compound library containing over 5.5 billion molecules through a series of steps, including calculating physical and chemical property similarities, constructing machine learning prediction models, and molecular docking.In the end, 51 compounds with potential ataxia telangiectasia-mutated and rad3-related (ATR) inhibitory activity were obtained.This method is effective for rapidly screening novel potential active compounds from large compound libraries.
  • [1] Bradbury A, Hall S, Curtin N, et al. Targeting ATR as Cancer Therapy: a new era for synthetic lethality and synergistic combinations [J]? Pharmacol Ther, 2020, 207: 107450.
    [2] Zimmermann A, Dahmen H, Grombacher T, et al. Abstract 2588: M1774, a novel potent and selective ATR inhibitor, shows antitumor effects as monotherapy and in combination[J]. Cancer Res, 2022, 82(12_Suppl): 2588.
    [3] Yap Timothy A, Tolcher Anthony W, Ruth PE, et al. A first-in-human phase I study of ATR inhibitor M1774 in patients with solid tumors[J]. J Clin Oncol, 2021, 39(15_suppl): TPS3153.
    [4] Zenke FT, Zimmermann A, Dahmen H, et al. Antitumor activity of M4344, a potent and selective ATR inhibitor, in monotherapy and combination therapy [J]. Cancer Res, 2019, 79(13_Suppl): 369.
    [5] Fokas E, Prevo R, Pollard JR, et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation[J]. Cell Death Dis, 2012, 3(12): e441.
    [6] Knegtel R, Charrier JD, Durrant S, et al. Rational design of 5-(4-(isopropylsulfonyl) phenyl)-3-(3-(4-((methylamino) methyl) phenyl) isoxazol-5-yl) pyrazin-2-amine (VX-970, M6620): optimization of intra- and intermolecular polar interactions of a new ataxia telangiectasia mutated and Rad3-related (ATR) kinase inhibitor[J]. J Med Chem, 2019, 62(11): 5547-5561.
    [7] Foote KM, Nissink JWM, McGuire T, et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent[J]. J Med Chem, 2018, 61(22): 9889-9907.
    [8] Foote KM, Lau A. Drugging ATR: progress in the development of specific inhibitors for the treatment of cancer[J]. Future Med Chem, 2015, 7(7): 873-891.
    [9] Luecking U, Lefranc J, Wengner A, et al. Abstract 983: identification of potent, highly selective and orally available ATR inhibitor BAY 1895344 with favorable PK properties and promising efficacy in monotherapy and combination in preclinical tumor models[J]. Cancer Res, 2017, 77(13_Suppl): 983.
    [10] Wengner AM, Siemeister G, Lücking U, et al. The novel ATR inhibitor BAY 1895344 is efficacious as monotherapy and combined with DNA damage-inducing or repair-compromising therapies in preclinical cancer models[J]. Mol Cancer Ther, 2020, 19(1): 26-38.
    [11] Roulston A, Zimmermann M, Papp R, et al. RP-3500: a novel, potent, and selective ATR inhibitor that is effective in preclinical models as a monotherapy and in combination with PARP inhibitors[J]. Mol Cancer Ther, 2022, 21(2): 245-256.
    [12] Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv Drug Deliv Rev, 2001, 46(1/2/3): 3-26.
    [13] Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates[J]. J Med Chem, 2002, 45(12): 2615-2623.
    [14] Taylor RD, MacCoss M, Lawson AD. Rings in drugs: miniperspective [J]. J Med Chem, 2014, 57(14): 5845-5859.
    [15] Friedman JH. Greedy function approximation: a gradient boosting machine[J]. Ann Statist, 2001, 29(5): 1189-1232.
    [16] Chen TQ, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
    [17] Dorogush AV, Ershov V, Gulin A. CatBoost: gradient boosting with categorical features support[J]. arXiv, 2018: 1810.11363.
    [18] Tropsha A, Gramatica P, Gombar V. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models[J]. QSAR Comb Sci, 2003, 22(1): 69-77.
    [19] Kar S, Roy K. First report on development of quantitative interspecies structure—carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines[J]. Chemosphere, 2012, 87(4): 339-355.
    [20] Ojha P, Mitra I, Das R, et al. Further exploring rm2 metrics for validation of QSPR models[J]. Chemom Intell Lab Syst, 2011, 107: 194-205.
    [21] Roy PP, Leonard JT, Roy K. Exploring the impact of size of training sets for the development of predictive QSAR models[J]. Chemom Intell Lab Syst, 2008, 90(1): 31-42.
    [22] Pratim Roy P, Paul S, Mitra I, et al. On two novel parameters for validation of predictive QSAR models[J]. Molecules, 2009, 14(5): 1660-1701.
    [23] Mitra I, Roy PP, Kar S, et al. On further application of r as a metric for validation of QSAR models[J]. J Chemom, 2010, 24(1): 22-33.
    [24] Brian Houston J, Carlile DJ. Prediction of hepatic clearance from microsomes, hepatocytes, and liver slices[J]. Drug Metab Rev, 1997, 29(4): 891-922.
    [25] Tang HD, Hussain A, Leal M, et al. Interspecies prediction of human drug clearance based on scaling data from one or two animal species[J]. Drug Metab Dispos, 2007, 35(10): 1886-1893.
    [26] Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy[J]. J Med Chem, 2004, 47(7): 1739-1749.
    [27] Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes[J]. J Med Chem, 2006, 49(21): 6177-6196.
    [28] Vilar S, Cozza G, Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery[J]. Curr Top Med Chem, 2008, 8(18): 1555-1572.
    [29] Vass M, Kooistra AJ, Ritschel T, et al. Molecular interaction fingerprint approaches for GPCR drug discovery[J]. Curr Opin Pharmacol, 2016, 30: 59-68.
    [30] Kozakov D, Grove LE, Hall DR, et al. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins[J]. Nat Protoc, 2015, 10(5): 733-755.
    [31] Bemis GW, Murcko MA. The properties of known drugs. 1. molecular frameworks[J]. J Med Chem, 1996, 39(15): 2887-2893.
    [32] Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, et al. Molecular sets (MOSES): a benchmarking platform for molecular generation models[J]. Front Pharmacol, 2020, 11: 565644.
    [33] Fearn T. Probabilistic principal component analysis[J]. NIR News, 2014, 25(3): 23.
    [34] Lu YP, Knapp M, Crawford K, et al. Rationally designed PI3Kα mutants to mimic ATR and their use to understand binding specificity of ATR inhibitors[J]. J Mol Biol, 2017, 429(11): 1684-1704.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  204
  • HTML全文浏览量:  17
  • PDF下载量:  379
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-06-11
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭