[1] |
Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade[J]. Cell, 2022, 185(3): 576.
|
[2] |
Zhou F, Qiao M, Zhou CC. The cutting-edge progress of immune-checkpoint blockade in lung cancer[J]. Cell Mol Immunol, 2021, 18(2): 279-293.
|
[3] |
André; T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218.
|
[4] |
Janjigian YY, Shitara K, Moehler M, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial[J]. Lancet, 2021, 398(10294): 27-40.
|
[5] |
Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in non-small cell lung cancer: facts and hopes[J]. Clin Cancer Res, 2019, 25(15): 4592-4602.
|
[6] |
Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance[J]. Nat Immunol, 2022, 23(5): 660-670.
|
[7] |
Lei QY, Wang D, Sun K, et al. Resistance mechanisms of anti-PD-1/PD-L1 therapy in solid tumors[J]. Front Cell Dev Biol, 2020, 8: 672.
|
[8] |
Tian H, Kang YL, Song XD, et al. PD-L1-targeted vaccine exhibits potent antitumor activity by simultaneously blocking PD-1/PD-L1 pathway and activating PD-L1-specific immune responses[J]. Cancer Lett, 2020, 476: 170-182.
|
[9] |
Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration[J]. Theranostics, 2021, 11(11): 5365-5386.
|
[10] |
Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy[J]. Nat Rev Cancer, 2020, 20(11): 662-680.
|
[11] |
McAuliffe J, Chan HF, Noblecourt L, et al. Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy[J]. J Immunother Cancer, 2021, 9(9): e003218.
|
[12] |
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J]. Nat Rev Clin Oncol, 2021, 18(4): 215-229.
|
[13] |
Ott PA, Hu-Lieskovan S, Chmielowski B, et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer[J]. Cell, 2020, 183(2): 347-362.e24.
|
[14] |
Parkhurst MR, Robbins PF, Tran E, et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers[J]. Cancer Discov, 2019, 9(8): 1022-1035.
|
[15] |
Geuijen C, Tacken P, Wang LC, et al. A human CD137 × PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade[J]. Nat Commun, 2021, 12(1): 4445.
|
[16] |
Munir S, Lundsager MT, J?rgensen MA, et al. Inflammation induced PD-L1-specific T cells[J]. Cell Stress, 2019, 3(10): 319-327.
|
[17] |
Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PD-L1 in tumour immune evasion[J]. Nat Rev Immunol, 2020, 20(4): 209-215.
|
[18] |
Guo LL, Overholser J, Good AJ, et al. Preclinical studies of a novel human PD-1 B-Cell peptide cancer vaccine PD-1-Vaxx from BALB/c mice to beagle dogs and to non-human primates (Cynomolgus monkeys)[J]. Front Oncol, 2022, 12: 826566.
|
[19] |
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355.
|
[20] |
Yu W, Jiang N, Ebert PJ, et al. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes[J]. Immunity, 2015, 42(5): 929-941.
|
[21] |
Tian H, He Y, Song XD, et al. Nitrated T helper cell epitopes enhance the immunogenicity of HER2 vaccine and induce anti-tumor immunity[J]. Cancer Lett, 2018, 430: 79–87.
|
[22] |
Su S, Zou ZY, Chen FJ, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer[J]. Oncoimmunology, 2017, 6(1): e1249558.
|
[23] |
Nelde A, Rammensee HG, Walz JS. The peptide vaccine of the future[J]. Mol Cell Proteomics, 2021, 20: 100022.
|
[24] |
Liao P, Wang WM, Wang WC, et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J]. Cancer Cell, 2022, 40(4): 365-378.e6.
|
[25] |
Gao Y, Yang JJ, Cai YX, et al. IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling[J]. Int J Cancer, 2018, 143(4): 931-943.
|
[26] |
Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy[J]. Nat Rev Immunol, 2018, 18(10): 648-659.
|
[27] |
Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition[J]. Clin Cancer Res, 2016, 22(8): 1865-1874.
|