• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

人工智能在生物医药领域中的应用和进展

言方荣

言方荣. 人工智能在生物医药领域中的应用和进展[J]. 中国药科大学学报, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304
引用本文: 言方荣. 人工智能在生物医药领域中的应用和进展[J]. 中国药科大学学报, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304
YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304
Citation: YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304

人工智能在生物医药领域中的应用和进展

Application and advance of artificial intelligence in biomedical field

  • 摘要: 近年来人工智能得到了快速发展,其在很大程度上改变了现代的生活方式。同时,人工智能极大地促进了医药行业的发展,在精准医学、智能诊断、计算机辅助药物设计以及临床试验决策等环节均发挥了关键作用,也在与医药产业的结合中极大地发展了自身。本文概述了人工智能研究中的关键问题,阐述人工智能在健康医药产业中的关键应用,并分析人工智能在健康医药产业中机遇与挑战,为人工智能在健康医药产业领域的发展提供参考。
    Abstract: Artificial intelligence (AI) has developed rapidly in the twentieth century, and has substantialy changed the modern way of life.At the same time, AI has greatly contributed to the development of the pharmaceutical industry, playing a key role in precision medicine, intelligent diagnosis, computer-aided drug design, and clinical trial decision-making, and has also greatly developed itself through its integration with the pharmaceutical industry.This paper outlines the key issues in research, describes the key applications of AI in the health and pharmaceutical industries, and finally analyzes the opportunities and challenges of AI in the health pharmaceutical industry to provide reference for the development of AI in the health and pharmaceutical fields.
  • [1] O'Sullivan S, Nevejans N, Allen C, et al. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery[J]. Int J Med Robotics Comput Assist Surg, 2019, 15(1): e1968.
    [2] Sun YT, Selvarajan S, Zang ZL, et al. Protein classifier for thyroid nodules learned from rapidly acquired proteotypes[J]. medRxiv, 2020. doi: 10.1101/2020.04.09.20059741.
    [3] Clinton N, Patel K. The imprecise promise of the Precision Medicine Initiative (PMI): where we got it wrong and how can we fix it[J]? J Clin Oncol,2021,39(15_suppl):e15102.
    [4] Xu L, Li W, Sun XH, et al. Development trend of precision medicine in 2022[J]. Chin Bull Life Sci (生命科学), 2023, 35(1): 42-47.
    [5] Laguarta J, Hueto F, Subirana B. COVID-19 artificial intelligence diagnosis using only cough recordings[J]. IEEE Open J Eng Med Biol, 2020, 1: 275-281.
    [6] Wehbe RM, Sheng JY, Dutta S, et al. DeepCOVID-XR: an artificial intelligence algorithm to detect COVID-19 on chest radiographs trained and tested on a large U.S. clinical data set[J]. Radiology, 2021, 299(1): E167-E176.
    [7] Hashimoto N, Fukushima D, Koga R, et al. Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle:IEEE,2020: 3851-3860.
    [8] Alom MZ, Yakopcic C, Hasan M, et al. Recurrent residual U-Net for medical image segmentation[J]. J Med Imag, 2019, 6(1): 1.
    [9] Toma?ev N, Glorot X, Rae JW, et al. A clinically applicable approach to continuous prediction of future acute kidney injury[J]. Nature, 2019, 572(7767): 116-119.
    [10] Weng SF, Reps J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data[J]? PLoS One, 2017, 12(4): e0174944.
    [11] Khan MTH, Fuskev?g OM, Sylte I. Discovery of potent thermolysin inhibitors using structure based virtual screening and binding assays[J]. J Med Chem, 2009, 52(1): 48-61.
    [12] Yasonik J. Multiobjective de novo drug design with recurrent neural networks and nondominated sorting[J]. J Cheminform, 2020, 12(1): 14.
    [13] Li XY, Xu YQ, Yao HQ, et al. Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors[J]. J Cheminform, 2020, 12(1): 42.
    [14] Winkler DA, Burden FR. Bayesian neural nets for modeling in drug discovery[J]. Drug Discov Today Biosilico, 2004, 2(3): 104-111.
    [15] Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590-596.
    [16] Ramamoorthy S, Murugan S. An attentive sequence model for adverse drug event extraction from biomedical text[J]. arXiv, 2018: 1801.00625.
    [17] Vaidya VP, Agrawal S, Sai Vinod M, et al. Development of an artificial intelligence model to dynamically predict metastatic recurrence of early-stage breast cancer patients[J]. J Clin Oncol, 2020, 38(15_suppl): e13078.
  • 期刊类型引用(1)

    1. 李喆,张智博,丁莉莉,赵克明. 老年重症肺炎患者并发多重耐药菌感染患者病原菌研究进展. 中国病原生物学杂志. 2024(07): 863-866 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-04-27
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭