[1] |
O'Sullivan S, Nevejans N, Allen C, et al. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery[J]. Int J Med Robotics Comput Assist Surg, 2019, 15(1): e1968.
|
[2] |
Sun YT, Selvarajan S, Zang ZL, et al. Protein classifier for thyroid nodules learned from rapidly acquired proteotypes[J]. medRxiv, 2020. doi: 10.1101/2020.04.09.20059741.
|
[3] |
Clinton N, Patel K. The imprecise promise of the Precision Medicine Initiative (PMI): where we got it wrong and how can we fix it[J]? J Clin Oncol,2021,39(15_suppl):e15102.
|
[4] |
Xu L, Li W, Sun XH, et al. Development trend of precision medicine in 2022[J]. Chin Bull Life Sci (生命科学), 2023, 35(1): 42-47.
|
[5] |
Laguarta J, Hueto F, Subirana B. COVID-19 artificial intelligence diagnosis using only cough recordings[J]. IEEE Open J Eng Med Biol, 2020, 1: 275-281.
|
[6] |
Wehbe RM, Sheng JY, Dutta S, et al. DeepCOVID-XR: an artificial intelligence algorithm to detect COVID-19 on chest radiographs trained and tested on a large U.S. clinical data set[J]. Radiology, 2021, 299(1): E167-E176.
|
[7] |
Hashimoto N, Fukushima D, Koga R, et al. Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle:IEEE,2020: 3851-3860.
|
[8] |
Alom MZ, Yakopcic C, Hasan M, et al. Recurrent residual U-Net for medical image segmentation[J]. J Med Imag, 2019, 6(1): 1.
|
[9] |
Toma?ev N, Glorot X, Rae JW, et al. A clinically applicable approach to continuous prediction of future acute kidney injury[J]. Nature, 2019, 572(7767): 116-119.
|
[10] |
Weng SF, Reps J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data[J]? PLoS One, 2017, 12(4): e0174944.
|
[11] |
Khan MTH, Fuskev?g OM, Sylte I. Discovery of potent thermolysin inhibitors using structure based virtual screening and binding assays[J]. J Med Chem, 2009, 52(1): 48-61.
|
[12] |
Yasonik J. Multiobjective de novo drug design with recurrent neural networks and nondominated sorting[J]. J Cheminform, 2020, 12(1): 14.
|
[13] |
Li XY, Xu YQ, Yao HQ, et al. Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors[J]. J Cheminform, 2020, 12(1): 42.
|
[14] |
Winkler DA, Burden FR. Bayesian neural nets for modeling in drug discovery[J]. Drug Discov Today Biosilico, 2004, 2(3): 104-111.
|
[15] |
Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590-596.
|
[16] |
Ramamoorthy S, Murugan S. An attentive sequence model for adverse drug event extraction from biomedical text[J]. arXiv, 2018: 1801.00625.
|
[17] |
Vaidya VP, Agrawal S, Sai Vinod M, et al. Development of an artificial intelligence model to dynamically predict metastatic recurrence of early-stage breast cancer patients[J]. J Clin Oncol, 2020, 38(15_suppl): e13078.
|