[1] |
Pillai N, Dasgupta A, Sudsakorn S, et al. Machine Learning guided early drug discovery of small molecules[J]. Drug Discov Today, 2022, 27(8): 2209-2215.
|
[2] |
Basant N, Gupta S, Singh KP. Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches[J]. Comput Biol Chem, 2016, 61: 178-196.
|
[3] |
Hou TJ, Wang JM, Li YY. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine[J]. J Chem Inf Model, 2007, 47(6): 2408-2415.
|
[4] |
Kumar R, Sharma A, Siddiqui MH, et al. Prediction of human intestinal absorption of compounds using artificial intelligence techniques[J]. Curr Drug Discov Technol, 2017, 14(4): 244-254.
|
[5] |
Fu MY, Zhu YY, Wu CY, et al. Prediction of plasma protein binding rate based on machine learning[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(6): 699-706.
|
[6] |
Wang YC, Liu HC, Fan YR, et al. In silico prediction of human intravenous pharmacokinetic parameters with improved accuracy[J]. J Chem Inf Model, 2019, 59(9): 3968-3980.
|
[7] |
Yang M, Chen JL, Xu LW, et al. A novel adaptive ensemble classification framework for ADME prediction[J]. RSC Adv, 2018, 8(21): 11661-11683.
|
[8] |
Xing GM, Liang L, Deng CL, et al. Activity prediction of small molecule inhibitors for antirheumatoid arthritis targets based on artificial intelligence[J]. ACS Comb Sci, 2020, 22(12): 873-886.
|
[9] |
Jadhav SD, Channe HP.. Comparative study of K-NN, naive Bayes and decision tree classification techniques[J]. Int J Sci Res, 2016, 5(1): 1842-1845.
|
[10] |
Wang MWH, Goodman JM, Allen TEH. Machine learning in predictive toxicology: recent applications and future directions for classification models[J]. Chem Res Toxicol, 2021, 34(2): 217-239.
|
[11] |
Geurts P, Ernst D, Wehenkel L. Extremely randomized trees[J]. Mach Learn, 2006, 63(1): 3-42.
|
[12] |
Ke GL, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 3149-3157.
|
[13] |
Chen TQ, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
|
[14] |
Dou LJ, Li XL, Zhang LC, et al. iGlu_AdaBoost: identification of lysine glutarylation using the AdaBoost classifier[J]. J Proteome Res, 2021, 20(1): 191-201.
|
[15] |
Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence. IEEE, 2012: 3642-3649.
|
[16] |
Tharwat A. Classification assessment methods[J].Appl Comput Inform, 2018, 12(1): 1-13.
|
[17] |
Warr WA. Scientific workflow systems: pipeline pilot and KNIME[J]. J Comput Aided Mol Des, 2012, 26(7): 801-804.
|
[18] |
Tipping ME, Bishop CM. Probabilistic principal component analysis[J]. J R Stat Soc, 1999, 61(3): 611-622.
|
[19] |
Maaten L, Hinton GE. Visualizing data using t-SNE[J]. J Mach Learn Res, 2008, 9: 2579-2605.
|
[20] |
Rogers D, Hahn M. Extended-connectivity fingerprints[J].J Chem Inf Model, 2010, 50(5): 742-754.
|
[21] |
Carracedo-Reboredo P, Li?ares-Blanco J, Rodríguez-Fernández N, et al. A review on machine learning approaches and trends in drug discovery[J].Comput Struct Biotechnol J, 2021, 19: 4538-4558.
|