• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

酱香型酒糟中难挥发性化学成分的研究

林琳, 齐晓冬, 李永素, 杨玉波, 杨鸣华, 陈毅, 孔令义, 王莉

林琳, 齐晓冬, 李永素, 杨玉波, 杨鸣华, 陈毅, 孔令义, 王莉. 酱香型酒糟中难挥发性化学成分的研究[J]. 中国药科大学学报, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402
引用本文: 林琳, 齐晓冬, 李永素, 杨玉波, 杨鸣华, 陈毅, 孔令义, 王莉. 酱香型酒糟中难挥发性化学成分的研究[J]. 中国药科大学学报, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402
LIN Lin, QI Xiaodong, LI Yongsu, YANG Yubo, YANG Minghua, CHEN Yi, KONG Lingyi, WANG Li. Identification of involatile chemical components from Moutai-flavored distiller’s grains[J]. Journal of China Pharmaceutical University, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402
Citation: LIN Lin, QI Xiaodong, LI Yongsu, YANG Yubo, YANG Minghua, CHEN Yi, KONG Lingyi, WANG Li. Identification of involatile chemical components from Moutai-flavored distiller’s grains[J]. Journal of China Pharmaceutical University, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402

酱香型酒糟中难挥发性化学成分的研究

Identification of involatile chemical components from Moutai-flavored distiller’s grains

  • 摘要: 为了研究酱香型酒糟中难挥发性化学成分,实验以75%乙醇提取茅台酒糟,利用硅胶、ODS、Sephadex LH-20等柱色谱及制备型HPLC对酒糟石油醚、乙酸乙酯萃取部位进行分离纯化,得到21个化合物。化合物经ESI-MS和NMR波谱分析技术鉴定,分别鉴定为十五烷酸(1)、十六烷酸(2)、反式-2-癸烯酸(3)、十八酸正壬酯(4)、十八酸乙酯(5)、亚油酸乙酯(6)、十二烷酸(7)、1,3-二辛酰基-2-亚油酰基甘油(8)、环(苯丙氨酸-脯氨酸)(9)、环(脯氨酸-亮氨酸)(10)、3,6-双(2-甲基丙基)-2,5-哌嗪二酮(11)、4-羟基苯乙醇(12)、2,4-二羟基苯甲酸(13)、豆甾醇(14)、2-呋喃甲酸(15)、缬氨酸(16)、L-丙氨酰-L-脯氨酸(17)、二氢槲皮素(18)、5,7,3'',4''-四羟基二氢黄酮(19)、槲皮素(20)、柚皮素(21)。化合物1 ~ 21为首次从酒糟中分离得到。
    Abstract: In order to study the involatile chemical components in Moutai-flavored distiller’s grains, the Moutai-flavored distiller’s grains were extracted with 75% ethanol, followed by extraction with petroleum ether, ethyl acetate, and n-butanol. Silica gel, ODS, sephadex LH-20, and preparative HPLC were used to separate and identify the petroleum ether and ethyl acetate layers.ESI-MS and NMR were used to identify the compounds, which were respectively identified as pentadecanoic acid (1), palmitic acid (2), trans-2-decenoic acid (3), n-nonyl octadecanoate (4), ethyl octadecanoate (5), ethyl linoleate (6), luric acid (7), 1, 3-dicaprylyl-2-linoleylglycerin (8), cyclic (phenylalanine-proline) (9), cyclo-(proline-leucine) (10), 3, 6-bis-(2-methylpropyl)-2,5-dione piperazine (11), 4-hydroxyphenethyl alcohol (12), 2,4-dihydroxybenzoic acid (13), stigmasterol (14), 2-furancarboxylic acid (15), valine (16), L-alanine acyl-L-proline (17), dihydroquercetin (18), 5, 7, 3'', 4''-tetrahydroxyflavonoids (19), quercetin (20), and naringenin (21). Compounds 1-21 were isolated from distiller’s grains for the first time.
  • [1] Liu K. Chemical composition of distillers grains,a review[J]. J Agric Food Chem,2011, 59(5): 1508-1526.
    [2] Li SZ. Compendium of Materia Medica (本草纲目)[M]. Xie QT, Compilation. Beijing: China International Broadcasting Audio Visual Press, 2006: 2228.
    [3] Editorial Board of Chinese Materia Medica, State Administration of Traditional Chinese Medicine. Chinese Materia Medica(中华本草)[M]. Shanghai: Science and Technology Press, 1999, 5: 767.
    [4] Jiang SY, Song H, Chen C, et al. Analysis of organic acids and flavoring compositions extracted from distiller’s grains[J]. Sci Technol Food Ind(食品工业科技), 2019, 40(17): 206-211.
    [5] Slim S, Lotifi M, Ahmed L, et al. Purification and structure eluciadation of three naturally bioactive molecules from the new terrestrial Streptomyces sp. TN17[J]. Nat Prod Res, 2011, 25(8): 806-814.
    [6] Hu YM, Yang ZL, Ye WC, et al. Studies on the constituents in rhizome of Homalomena occulta[J]. Chin Tradit Patent Med (中成药), 2006, 28(12): 1794-1796.
    [7] Lalli JYY, Viljoen AM, Baser KHSC, et al. The essential oil composition and chemo taxonomical appraisal of South African Pelargoniums(Geraniaceae)[J]. J Essent Oil Res, 2006, 18: 89-105.
    [8] Singh AP, Sharma, Surandra K. A new antimicrobial pentacyclic triterpenoid from the rhizomes of Nardostachys jatamansi DC[J]. Indian J Chem B, 2019, 58B(4): 516-521.
    [9] Zhang YB, Xu XJ, Liu HM. Chemical constituents from Mahkota dewa[J]. J Asian Nat Prod Res, 2006, 8(1/2): 119-123.
    [10] Yang MX, Liang YG, Chen HR, et al. Chemical constituents from leaves of wild Aquilaria sinensis[J]. Chin Tradit Herbal Drugs(中草药), 2014, 45(14): 1989-1992.
    [11] Subeki, Matsuura H, Takahashi K, et al. Screening of indonesian medicinal plant extracts for antibabesial activity and isolation of new quassinoids from Brucea jawanica[J]. J Nat Prod, 2007, 70(10): 1654-1657.
    [12] Qi J, Shi RF, Yu JM, et al. Chemical constituents from leaves of Camellia nitidissima and their potential cytotoxicity on SGC7901 cells[J]. Chinese Herb Med, 2016, 8(1): 80-84.
    [13] Wang GH, Dai SK, Chen MJ, et al. Two diketopiperazine cyclo(pro-phe) isomers from marine bacteria Bacillus subtilis sp. 13-2 [J]. Chem Nat Compd, 2010, 46(4): 583-585.
    [14] Wang XD. Study on chemical constituents and biological activities of distiller’s grains and koji in Maotai Town, Guizhou Province(贵州茅台镇酒糟与酒曲化学成分及生物活性研究)[D]. Guiyang: Guizhou University, 2016.
    [15] Kong FD, Zhang Y, Ma QY, et al. Secondary metabolites from marine fungus Penicillium sp. SCS-KFD16[J]. Chin Tradit Herbal Drugs(中草药), 2018, 49(21): 5029-5033.
    [16] Bertéli MBD, Barros L, Reis FS, et al. Antimicrobial activity, chemical composition and cytotoxicity of Lentinus crinitus basidiocarp[J]. Food Funct, 2021, 12(15): 6780-6792.
    [17] De Santi LL, Pacheco BS, Venzke D, et al. Sterols in red macroalgae from antarctica: extraction and quantification by Gas Chromatography–Mass spectrometry[J]. Polar Biol, 2021, 44(15): 987-995.
    [18] Shi L, Han L, Zhao Z, et al. Furanoids from the Gymnadenia conopsea (Orchidaceae) seed germination supporting fungus Ceratobasidium sp.(GS2) [J]. Front Microbiol, 2022, 13: 1037292.
    [19] Wang T, Xie H, Chen X, et al. Simultaneous determination of leucine, isoleucine and valine in Beagle dog plasma by HPLC-MS/MS and its application to a pharmacokinetic study[J]. J Pharm Biomed Anal, 2015, 114: 426-432.
    [20] Meyer TE, Fox SD, Issaq HJ, et al. A reproducible and high-throughput HPLC/MS method to separate sarcosine from α- and β-alanine and to quantify sarcosine in human serum and urine[J]. Anal Chem, 2011, 83(14): 5735-5740.
    [21] Zhang X, Su M, Du J, et al. Profiling of naturally occurring proanthocyanidins and other phenolic compounds in a diverse peach germplasm by LC-MS/MS[J]. Food Chem, 2023, 403: 134471.
    [22] Nobakht M, Grkovic T, Trueman SJ, et al. Chemical constituents of kino extract from Corymbia torelliana[J]. Molecules, 2014, 19(11): 17862-17871.
    [23] Li J, Liang X. Analysis of antitussive active ingredients of Asplenium sampsoni[J]. China Pharm(中国药房), 2021, 32(15): 1837-1841.
    [24] Tisserant LP, Hubert J, Lequart M, et al. 13C NMR and LC-MS profiling of stilbenes from elicited grapevine hairy root cultures[J]. J Nat Prod, 2016, 79(11): 2846-2855.
    [25] Galdiero E, Ricciardelli A, D’Angelo C, et al. Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: towards the development of an anti-biofilm coating to prevent polymicrobial infections[J]. Res Microbiol, 2021, 172(7/8): 103880.
    [26] Vikram A, Ante VM, Bina XR, et al. Cyclo(valine-valine) inhi-bits Vibrio cholerae virulence gene expression[J]. Microbiology(Reading), 2014, 160(6): 1054-1062.
    [27] Casadey R, Challier C, Altamirano M, et al. Antioxidant and antimicrobial properties of tyrosol and derivative-compounds in the presence of vitamin B2. Assays of synergistic antioxidant effect with commercial food additives[J]. Food Chem, 2021, 335: 127576.
    [28] Panda S, Jafri M, Kar A, et al. Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma[J]. Fitoterapia, 2009, 80(2): 123-126.
    [29] Sunil C, Xu B. An insight into the health-promoting effects of taxifolin(dihydroquercetin)[J]. Phytochemistry, 2019, 166: 112066.
    [30] Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical[J]. Eur J Pharmacol, 2008, 585(2-3): 325-337.
    [31] Mieremet A, Helder R, Nadaban A, et al. Contribution of palmitic acid to epidermal morphogenesis and lipid barrier formation in human skin equivalents[J]. Int J Mol Sci, 2019, 20(23): 6069.
    [32] Ko GA, Kim Cho S. Ethyl linoleate inhibits α-MSH-induced melanogenesis through Akt/GSK3β/β-catenin signal pathway[J]. Korean J Physiol Pharmacol, 2018, 22(1): 53-61.
  • 期刊类型引用(2)

    1. 曾庆儒,谢玲,龚小会,陈晨,苏正,杨博. 白酒酒糟在不同领域综合利用的研究进展. 酿酒. 2025(01): 47-52 . 百度学术
    2. 王风青,陈燕梅,郑佳,宋洪宁,杨灿,刘军,刘根侨,李仲玄. 白酒固态酿造副产物丢糟在动物养殖中的应用研究. 中国饲料. 2024(21): 175-180+202 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  174
  • HTML全文浏览量:  13
  • PDF下载量:  381
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-05-29
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭