蛋白棕榈酰化修饰在非酒精性脂肪性肝病相关疾病中作用机制的研究进展
Research progress of palmitoylation in non-alcoholic fatty liver disease and related liver diseases
-
摘要: 非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)已成为全球范围内威胁人类健康的重大公共卫生问题,但其发病机制复杂,新药研发困难重重,临床用药依旧匮乏。棕榈酰化是广泛发生的一种由棕榈酰基转移酶催化的蛋白质翻译后修饰,影响其稳定性、胞膜定位及功能发挥。近年来,研究表明蛋白棕榈酰化修饰与NAFLD的病程密切相关。本文对目前已报道棕榈酰化修饰在NAFLD相关疾病中作用机制作一综述,并分析GEO数据库NAFLD肝组织中棕榈酰基转移酶家族表达水平,对探寻NAFLD发病新机制具有重要意义。Abstract: Non-alcoholic fatty liver disease (NAFLD) has become a major public health hazard threatening human health worldwide.Yet, due to its complex pathogenesis, new drug development is difficult, with still insufficient clinical medication.Palmitoylation is a universal posttranslational modification of proteins catalyzed by palmitoyltransferase, affecting their stability, membrane localization and function.Recent studies have shown that palmitoylation is closely associated with NAFLD.This review summarizes the mechanisms of palmitoylation in NAFLD and analyzes the expression levels of the palmitoyltransferase family in liver tissues of NAFLD patients from GEO database, aiming to provide important clues to explore new mechanisms for NAFLD.
-
脑科学是当前国际科技前沿的热点领域和重要方向,“十四五”国家规划将“脑科学与类脑研究”列入七大“科技前沿领域攻关项目”,涵盖了脑重大疾病机制与干预研究等核心攻关难题。药学是支撑“脑计划”研究的关键领域,然而目前有关脑部疾病的药物开发陷入疗效低、临床转化率低的困境,这主要源于特殊生理屏障(血-脑脊液屏障/血脑屏障)的阻碍。精准可控的脑内药物递送技术与创新治疗策略的开发是突破脑重大疾病治疗瓶颈的关键举措。本专栏聚焦脑内药物递送技术,展开对现有脑病治疗策略的讨论,全面总结现阶段临床脑病用药前沿研究,以期为脑病治疗提供新启发、开辟新道路。
1. 脑内药物递送技术研究
脑部疾病的治疗药物前期研发困难、后期临床转化率低,主要原因在于血脑屏障(blood brain barrier,BBB)的阻碍。BBB作为大脑的天然保护屏障,对保护大脑免受外部有害物质的攻击起着至关重要的作用。此外,BBB也限制了药物分子入脑,显著影响了脑部疾病的用药疗效。因此,克服BBB是改善脑重大疾病治疗的关键。
迄今为止,研究人员开发了多种药物跨BBB递送策略,涉及候选药物分子修饰以增强BBB渗透性、干扰BBB紧密连接排布或表达、抑制药物中枢外排系统,以及利用载体偶联药物递送入脑等。这些方法旨在提高药物生物利用度,继而实现药物在特定病灶脑区的精准递释。虽然多种脑病用药已进入临床试验,但其临床转化率仅有8.2%。针对药物入脑较低、疗效不佳的挑战,优选给药路径绕过BBB,或者设计新型递药系统增强BBB渗透活性是提高药物入脑效率和临床转化率的重要研究方向。本期专题中由加拿大曼尼托巴大学顾晓晨联合中国药科大学丁杨团队撰写的《脑病用药递送策略及临床研究进展》一文从脑病用药在临床研究中存在的关键问题出发,分别从优化给药途径和开发新型递药系统两方面综述了脑病治疗药物的开发策略。在优效给药途径方面,非侵入性给药如鼻黏膜给药、口腔黏膜给药、吸入给药和经皮给药等策略应用广泛。这些给药途径能够避免肝脏首过效应,提高药物的生物利用度,并且可以直接或间接地将药物递送至脑内。其中,鼻黏膜给药利用鼻腔的独特生理结构,通过嗅神经和三叉神经绕过BBB直接递送药物入脑,显著提高药物的脑内富集。口腔黏膜给药则通过颊黏膜和舌下黏膜丰富的毛细血管,使药物快速进入体循环或直接跨越BBB入脑。吸入给药和经皮给药也因其独特的优势为众多临床脑病治疗药物所青睐。侵入性局部给药能够实现药物在脑内高效富集及物脑内精准递送,具有极高临床应用前景。新型递药系统的研究则集中在如何提高药物跨BBB效率。文章介绍了基于受体介导转胞吞递药系统、基于细胞归巢的跨膜递药系统和基于超声可逆打开BBB递药系统等策略,通过利用脑内天然转运机制或物理手段,显著提高药物的入脑效率。例如,受体介导转胞吞递药系统利用BBB上的特定受体,促进药物的胞吞和转运入脑。细胞归巢策略则利用免疫细胞的天然BBB渗透能力,将药物直接递送至脑内炎症区域。超声技术则通过物理手段短暂可逆打开BBB,为药物提供穿越的通道,为治疗脑病的大分子药物提供高效的开发策略。
近年来,纳米技术的飞速发展为脑内药物递送提供了新途径。在提高药物入脑效率的基础上,纳米技术通过调控药物的靶向性和释放特性,降低药物对正常脑组织的毒性。此外,多功能的纳米载体对融合诊断和治疗的“诊疗一体化”策略具有重要意义。本期专题中由中国药科大学药学院张华清团队撰写的《纳米递送系统介导的血脑屏障跨越策略和脑靶向药物递送研究进展》一文介绍了BBB的生理结构与转运机制,总结了不同基材的纳米颗粒跨BBB递送药物的研究案例及最新进展。以中枢系统疾病为线索,详细阐述了BBB在不同病理条件下的病变特征以及定制化药物递送途径。如阿尔茨海默病(Alzheimer’s disease,AD)病变过程中,BBB呈现出脑内胶质细胞激活、脑微血管内皮细胞覆盖减少、紧密连接中断等病理变化,进而诱发BBB渗透性增强、外周免疫细胞浸润增多等级联反应。干细胞疗法巧妙借用了AD病理环境下BBB的高渗透特性,高效入脑发挥疗效。同时,AD患者BBB上的转运受体表达异常,如:承担Aβ由血入脑的晚期糖基化终末产物(RAGE)转运体表达上调,而运输Aβ出脑入血的低密度脂蛋白受体相关蛋白1(LRP1)转运体则表达下调,二者“联手”加剧了脑内Aβ的异常蓄积。RAGE和LRP1受体表达变化启发研究者开发RAGE转运体底物及其模拟物,进而通过靶向修饰增效药物递送入脑。而在帕金森病中,脑微血管内皮细胞的显著增加导致多种转运蛋白均表达上调,为药物渗透入脑提供了靶向条件。此外,脑胶质瘤治疗药物递送面临BBB与血-肿瘤屏障(BBTB)的双重障碍,其治疗手段需实现多重渗透与靶向;创伤性脑损伤的BBB开放程度则呈现时间依赖性,药物递送需重点考虑BBB的有效开放时间窗。虽然不同脑部疾病背景下的BBB特性和病理变化各不相同,但均为脑内药物递送及不同脑部疾病跨BBB药物递送策略的开发提供了新的方向;针对不同疾病病理下BBB变化特征,设计新型药物递送系统,有望为不同中枢疾病的脑内药物递送策略和纳米递送系统设计提供思路。
2. 脑病治疗策略研究
脑病治疗难点在于病程长、预后恢复较差、致残率和致死率高,但与之相对应的是极低的药物疗效与临床转化成功率。开发新型药物递送策略是增强中枢疾病药物疗效的主要途径之一,本期专题分析了多种脑部疾病药物递送困难,介绍并讨论了其临床新型脑部递药策略。如偏头痛、癫痫等的治疗注重快速缓解症状、发病时给药便捷。因此,能够将药物快速递送入脑的鼻黏膜给药、吸入给药在临床治疗中广为实践。而脑肿瘤和某些神经退行性疾病的疗效优化关键点在于增强药物的BBB渗透效率,故直接将药物递送至脑内或脑脊液中的侵入性局部给药途径因其递送效率高而更为合适。但考虑到侵入性给药的低顺应性与安全性,近年来经皮给药凭借其持续药物释放特性与高生物利用度被更多地用于开发临床神经退行性疾病治疗。
AD是一种进行性的神经退行性疾病,以记忆力减退、认知功能障碍和行为改变为主要临床表现。根据《中国阿尔茨海默病报告2024》,2021年中国AD及其他痴呆患者人数已达将近
1700 万例,且患病率随年龄的增加而不断上升。与高患病率不对等的是AD低治疗水平,两者间的不平衡迫切需要AD新药研发。但是,AD药物的临床失败率极高,主要原因就是复杂的病理机制,且不同病理之间存在相互串扰。小胶质细胞作为中枢神经系统(central nervous system,CNS)的主要免疫细胞,在AD神经保护和修复中扮演着“双刃剑”角色。它们在维持脑内微环境稳定、保护神经元和清除AD毒性蛋白(Aβ或Tau)方面发挥着重要作用,但功能失调的小胶质细胞也会诱发脑内炎性风暴,加剧AD病理过程。因此,调节小胶质细胞的状态和功能是AD治疗的途径之一。目前,基于小胶质细胞的AD治疗策略在多项研究中取得进展,美国食品药品监督管理局(FDA)批准上市的3款Aβ单抗均依赖于小胶质细胞对Aβ清除活性而发挥疗效。本期专题中由中国药科大学药学院钱程根团队撰写的《调控小胶质细胞干预阿尔茨海默病的研究进展》一文中介绍了小胶质细胞的来源与其在AD发生发展中的重要作用,阐明小胶质细胞能够多通路、多机制发挥AD治疗效果。文章详细列举了小胶质细胞在AD病理干预中的研究进展:一方面高度参与Aβ识别、吞噬、降解和跨细胞传播过程,另一方面过度吞噬Aβ会激活小胶质细胞加剧神经炎症。因此,调控“最佳状态”的小胶质细胞是AD治疗的关键。近年AD研究表明,铁死亡是一种铁触发脂质过氧化的调节性细胞死亡过程,对AD病理进程作用极大。铁死亡特征主要有细胞内铁含量增加、脂质过氧化及其产物导致损伤修复抑制等。AD患者脑内铁代谢紊乱、氧化还原失衡和脂质过氧化物途径增强,提示“铁死亡假说”是AD主要发病机制之一。本期专题中由中国药科大学药学院周建平、程皓团队撰写的《基于铁死亡致病机制的抗阿尔茨海默病纳米药物递送系统研究进展》一文中介绍了以干预铁死亡为靶点的AD治疗策略:利用铁螯合剂清除蓄积铁、逆转脑内铁转运来调控铁代谢失衡,通过抑制铁死亡发挥神经保护作用,已经在动物模型中显示出良好AD疗效。此外,脂质过氧化及其产物蓄积诱发的氧化还原稳态失衡亦是神经元铁死亡的直接诱因,通过重建氧化还原稳态抵抗铁死亡也是AD治疗的重要策略。
脑胶质瘤(glioblastoma,GBM)是中枢原发性恶性肿瘤,尽管治疗技术随着时代不断进步,但由于GBM病理复杂性和侵袭性,临床治疗仍然是一个严峻的挑战。手术是GBM临床治疗的主要方法,但由于GBM表现出弥漫性浸润边界,手术难以完全切除。为此,通常在术后配合放射治疗以杀灭或抑制肿瘤细胞,延长患者生存期。但常规放射疗法对正常脑组织造成损伤,且放射耐受性导致术后恢复和患者生活质量下降。本期专题中由复旦大学药学院孙涛团队撰写的《药物递送系统介导的脑胶质瘤放疗增敏》一文中基于放射治疗GBM机制,阐明放疗产生的内在耐受性以及肿瘤微环境介导的耐受性。解除放疗耐受性,实现放疗增敏药物的脑靶向递送,提高跨BBB递送能力及延长瘤内滞留是临床GBM术后放疗疗效关键。文章重点介绍了无机、有机、仿生3种类别的纳米递药系统,在实现精准靶向的同时,兼具肿瘤病灶的药物精准控释,甚至整合荧光探针以辅助精准放疗,为高效消除GBM、避免术后复发提供了新策略。
3. 展 望
脑内疾病的病理机制复杂多变,BBB作为生理屏障限制了药物入脑效率,是阻碍脑病用药疗效的关键因素。随着医药科技的发展,BBB结构的深入了解和纳米技术的进步推动着脑内药物递送系统的革新。针对脑病“定制”的纳米载体能够响应特定的生理或病理信号,实现药物在病变脑区的靶向释放,减少对正常脑组织的不良反应。而多种非侵入性给药方式为长周期的慢病管理提供了高顺应性的创新治疗方案。尽管跨BBB策略已被充分运用于各类脑病治疗中以提高药物疗效,但其具体效率仍有待量化。此外,如何平衡不同纳米载体的安全性与高效性是药物递送系统后续临床转化的潜在难题。
目前针对不同脑重大疾病,研究者已开发了相应的治疗策略对症下药。如AD小胶质细胞调控与铁死亡抑制策略,脑胶质瘤的放疗增敏策略等。但由于脑部疾病病征复杂性,控制单一病因往往无法达到理想的治疗效果,后续可考虑联合多种病理机制建立综合方案,以期实现脑部疾病的系统性治疗。随着脑机接口和神经调控技术的发展,未来将为脑病诊断和治疗提供新手段,从而实现脑内药物递送技术及脑病治疗策略的多元化、个性化和精准化。
-
[1] Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224. [2] Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904. [3] Singh S, Allen AM, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies[J]. Clin Gastroenterol Hepatol, 2015, 13(4): 643-654.e1-9;quize39-40. [4] Yuan HW, Shyy JYJ, Martins-Green M. Second-hand smoke stimulates lipid accumulation in the liver by modulating AMPK and SREBP-1[J]. J Hepatol, 2009, 51(3): 535-547. [5] Juanola O, Martínez-López S, Francés R, et al. Non-alcoholic fatty liver disease: metabolic, genetic, epigenetic and environmental risk factors[J]. Int J Environ Res Public Health, 2021, 18(10): 5227. [6] Zhou F, Zhou JH, Wang WX, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: a systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. [7] Du T, Chen J, Shen X. Research advances in susceptibility genes of non-alcoholic fatty liver disease and its association with type 2 diabetes[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(5): 537-544. [8] Meroni M, Longo M, Rustichelli A, et al. Nutrition and genetics in NAFLD: the perfect binomium[J]. Int J Mol Sci, 2020, 21(8): 2986. [9] Gosis BS, Wada S, Thorsheim C, et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1[J]. Science, 2022, 376(6590): eabf8271 .[10] Khan RS, Bril F, Cusi K, et al. Modulation of insulin resistance in nonalcoholic fatty liver disease[J]. Hepatology, 2019, 70(2): 711-724. [11] Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922. [12] Yang YM, Kim SY, Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets[J]. Semin Liver Dis, 2019, 39(1): 26-42. [13] Hammoutene A, Rautou PE. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease[J]. J Hepatol, 2019, 70(6): 1278-1291. [14] Schwabe RF, Tabas I, Pajvani UB. Mechanisms of fibrosis development in nonalcoholic steatohepatitis[J]. Gastroenterology, 2020, 158(7): 1913-1928. [15] Kumar S, Duan QH, Wu RX, et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Adv Drug Deliv Rev, 2021, 176: 113869. [16] Zhang CY, Yang M. Current options and future directions for NAFLD and NASH treatment[J]. Int J Mol Sci, 2021, 22(14): 7571. [17] Svegliati-Baroni G, Pierantonelli I, Torquato P, et al. Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease[J]. Free Radic Biol Med, 2019, 144: 293-309. [18] Pepinsky RB, Zeng C, Wen D, et al. Identification of a palmitic acid-modified form of human Sonic hedgehog[J]. J Biol Chem, 1998, 273(22): 14037-14045. [19] Hofmann K. A superfamily of membrane-bound O-acyltransfe-rases with implications for Wnt signaling[J]. Trends Biochem Sci, 2000, 25(3): 111-112. [20] Stix R, Lee CJ, Faraldo-Gómez JD, et al. Structure and mechanism of DHHC protein acyltransferases[J]. J Mol Biol, 2020, 432(18): 4983-4998. [21] González Montoro A, Quiroga R, Valdez Taubas J. Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1[J]. Biochem J, 2013, 454(3): 427-435. [22] Jiang H, Zhang XY, Chen X, et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies[J]. Chem Rev, 2018, 118(3): 919-988. [23] Masumoto N, Lanyon-Hogg T, Rodgers UR, et al. Membrane bound O-acyltransferases and their inhibitors[J]. Biochem Soc Trans, 2015, 43(2): 246-252. [24] Greaves J, Chamberlain LH. DHHC palmitoyl transferases: substrate interactions and (patho)physiology[J]. Trends Biochem Sci, 2011, 36(5): 245-253. [25] Rana MS, Lee CJ, Banerjee A. The molecular mechanism of DHHC protein acyltransferases[J]. Biochem Soc Trans, 2019, 47(1): 157-167. [26] Gao XX, Hannoush RN. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine[J]. Nat Chem Biol, 2014, 10(1): 61-68. [27] Jin JY, Zhi XL, Wang XH, et al. Protein palmitoylation and its pathophysiological relevance[J]. J Cell Physiol, 2021, 236(5): 3220-3233. [28] Yao H, Lan J, Li CS, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours[J]. Nat Biomed Eng, 2019, 3(4): 306-317. [29] Busquets-Hernández C, Triola G. Palmitoylation as a key regulator of ras localization and function[J]. Front Mol Biosci, 2021, 8: 659861. [30] Shahinian S, Silvius JR. Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes[J]. Biochemistry, 1995, 34(11): 3813-3822. [31] Rocks O, Peyker A, Kahms M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms[J]. Science, 2005, 307(5716): 1746-1752. [32] Hampel H, Vassar R, De Strooper B, et al. The β-secretase BACE1 in Alzheimer’s disease[J]. Biol Psychiatry, 2021, 89(8): 745-756. [33] Dai GC. Neuronal KCNQ2/3 channels are recruited to lipid raft microdomains by palmitoylation of BACE1[J]. J Gen Physiol, 2022, 154(4): e202112888 .[34] Song J, Yuan CM, Li WJ, et al. APP palmitoylation is involved in the increase in Aβ1-42 induced by aluminum[J]. Brain Res, 2022, 1774: 147709. [35] Andrew RJ, Fernandez CG, Stanley M, et al. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease[J]. Proc Natl Acad Sci U S A, 2017, 114(45): E9665-E9674. [36] Valdez-Taubas J, Pelham H. Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation[J]. EMBO J, 2005, 24(14): 2524-2532. [37] Yang EP, Shen J. The roles and functions of Paneth cells in Crohn’s disease: a critical review[J]. Cell Prolif, 2021, 54(1): e12958 .[38] de Bruyn M, Vermeire S. NOD2 and bacterial recognition as therapeutic targets for Crohn’s disease[J]. Expert Opin Ther Targets, 2017, 21(12): 1123-1139. [39] Lu Y, Zheng YP, Coyaud é, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing[J]. Science, 2019, 366(6464): 460-467. [40] Karunakaran U, Elumalai S, Moon JS, et al. CD36 signal transduction in metabolic diseases: novel insights and therapeutic targeting[J]. Cells, 2021, 10(7): 1833. [41] Shu HY, Peng YZ, Hang WJ, et al. The role of CD36 in cardiovascular disease[J]. Cardiovasc Res, 2022, 118(1): 115-129. [42] Zhao L, Zhang C, Luo XX, et al. CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis[J]. J Hepatol, 2018, 69(3): 705-717. [43] Zeng S, Wu F, Chen MY, et al. Inhibition of fatty acid translocase (FAT/CD36) palmitoylation enhances hepatic fatty acid β-oxidation by increasing its localization to mitochondria and interaction with long-chain acyl-CoA synthetase 1[J]. Antioxid Redox Signal, 2022, 36(16/17/18): 1081-1100. [44] Yang S, Jia LJ, Xiang JQ, et al. KLF10 promotes nonalcoholic steatohepatitis progression through transcriptional activation of zDHHC7[J]. EMBO Rep, 2022, 23(6): e54229 .[45] You MY, Wu F, Gao ML, et al. Selenoprotein K contributes to CD36 subcellular trafficking in hepatocytes by accelerating nascent COPII vesicle formation and aggravates hepatic steatosis[J]. Redox Biol, 2022, 57: 102500. [46] Meiler S, Baumer Y, Huang Z, et al. Selenoprotein K is required for palmitoylation of CD36 in macrophages: implications in foam cell formation and atherogenesis[J]. J Leukoc Biol, 2013, 93(5): 771-780. [47] Wang J, Hao JW, Wang X, et al. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane[J]. Cell Rep, 2019, 26(1): 209-221.e5. [48] Chu HY, Du C, Yang Y, et al. MC-LR aggravates liver lipid metabolism disorders in obese mice fed a high-fat diet via PI3K/AKT/mTOR/SREBP1 signaling pathway[J]. Toxins, 2022, 14(12): 833. [49] Tan XY, Sun Y, Chen L, et al. Caffeine ameliorates AKT-driven nonalcoholic steatohepatitis by suppressing De novo lipogenesis and MyD88 palmitoylation[J]. J Agric Food Chem, 2022, 70(20): 6108-6122. [50] Leavens KF, Easton RM, Shulman GI, et al. Akt2 is required for hepatic lipid accumulation in models of insulin resistance[J]. Cell Metab, 2009, 10(5): 405-418. [51] Blaustein M, Piegari E, Martínez Calejman C, et al. Akt is S-palmitoylated: a new layer of regulation for Akt[J]. Front Cell Dev Biol, 2021, 9: 626404. [52] Xiong WF, Sun KY, Zhu Y, et al. Metformin alleviates inflammation through suppressing FASN-dependent palmitoylation of Akt[J]. Cell Death Dis, 2021, 12(10): 934. [53] Wang LL, Jia ZD, Wang BC, et al. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway[J]. Turk J Gastroenterol, 2020, 31(12): 902-909. [54] Kim YC, Lee SE, Kim SK, et al. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation[J]. Nat Chem Biol, 2019, 15(9): 907-916. [55] Resh MD. Palmitoylation of Hedgehog proteins by Hedgehog acyltransferase: roles in signalling and disease[J]. Open Biol, 2021, 11(3): 200414. [56] Guy CD, Suzuki A, Zdanowicz M, et al. Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease[J]. Hepatology, 2012, 55(6): 1711-1721. [57] Sircana A, Paschetta E, Saba F, et al. Recent insight into the role of fibrosis in nonalcoholic steatohepatitis-related hepatocellular carcinoma[J]. Int J Mol Sci, 2019, 20(7): 1745. [58] Verdelho Machado M, Diehl AM. The hedgehog pathway in nonalcoholic fatty liver disease[J]. Crit Rev Biochem Mol Biol, 2018, 53(3): 264-278. [59] Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. [60] Chong LW, Tsai CL, Yang KC, et al. Targeting protein palmitoylation decreases palmitate-induced sphere formation of human liver cancer cells[J]. Mol Med Rep, 2020, 22(2): 939-947. [61] Chong LW, Chou RH, Liao CC, et al. Saturated fatty acid induces cancer stem cell-like properties in human hepatoma cells[J]. Cell Mol Biol, 2015, 61(6): 85-91. [62] Davda D, El Azzouny MA, Tom CT, et al. Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate[J]. ACS Chem Biol, 2013, 8(9): 1912-1917.
计量
- 文章访问数: 289
- HTML全文浏览量: 12
- PDF下载量: 484