• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于人工智能的药物研发:目前的进展和未来的挑战

余泽浩, 张雷明, 张梦娜, 戴智琦, 彭成斌, 郑四鸣

余泽浩, 张雷明, 张梦娜, 戴智琦, 彭成斌, 郑四鸣. 基于人工智能的药物研发:目前的进展和未来的挑战[J]. 中国药科大学学报, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003
引用本文: 余泽浩, 张雷明, 张梦娜, 戴智琦, 彭成斌, 郑四鸣. 基于人工智能的药物研发:目前的进展和未来的挑战[J]. 中国药科大学学报, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003
YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003
Citation: YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003

基于人工智能的药物研发:目前的进展和未来的挑战

基金项目: 浙江省中医药科技计划资助项目(No.2022ZB323);浙江省医药卫生科技计划资助项目(No.2022KY1114);宁波市自然科学基金资助项目(No.2021J268)

Artificial intelligence-based drug development: current progress and future challenges

Funds: This study was supported by the TCM Science and Technology Plan Project of Zhejiang Province (No.2022ZB323); the Medical and Health Science and Technology Plan Project of Zhejiang Province (No.2022KY1114); and the Natural Science Foundation of Ningbo (No.2021J268)
  • 摘要: 近年来,人工智能在药物研发领域得到了广泛的应用。特别是自然语言处理技术在预训练模型的出现后有了非常显著的提高,在此基础上,图神经网络的引入也使得药物研发变得更加准确和高效。为了使药物研发者更加系统全面地了解人工智能在药物研发中的应用,本文介绍了人工智能中的前沿算法,同时阐述了人工智能在药物小分子设计、虚拟筛选、药物再利用以及药物性质预测等多方面的应用场景,最后探讨它在未来药物研发中的机遇与挑战。
    Abstract: In recent years, artificial intelligence (AI) has been widely applied in the field of drug discovery and development.In particular, natural language processing technology has been significantly improved after the emergence of the pre-training model.On this basis, the introduction of graph neural network has also made drug development more accurate and efficient.In order to help drug developers more systematically and comprehensively understand the application of artificial intelligence in drug discovery, this article introduces cutting-edge algorithms in AI, and elaborates on the various applications of AI in drug development, including drug small molecule design, virtual screening, drug repurposing, and drug property prediction, finally discusses the opportunities and challenges of AI in future drug development.
  • [1] Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery[J]. Mol Divers, 2021, 25(3): 1315-1360.
    [2] Jayatunga MKP, Xie W, Ruder L, et al. AI in small-molecule drug discovery: a coming wave[J]? Nat Rev Drug Discov, 2022, 21(3): 175-176.
    [3] Koromina M, Pandi MT, Patrinos GP. Rethinking drug repositioning and development with artificial intelligence, machine learning, and omics[J]. OMICS, 2019, 23(11): 539-548.
    [4] Yang X, Wang YF, Byrne R, et al. Concepts of artificial intelligence for computer-assisted drug discovery[J]. Chem Rev, 2019, 119(18): 10520-10594.
    [5] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Netw, 1989, 2(5): 359-366.
    [6] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
    [7] Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(8): 1798-1828.
    [8] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Commun ACM, 2020, 63(11): 139-144.
    [9] ?ztürk H, ?zgür A, Schwaller P, et al. Exploring chemical space using natural language processing methodologies for drug discovery[J]. Drug Discov Today, 2020, 25(4): 689-705.
    [10] Kriegeskorte N, Golan T. Neural network models and deep learning[J]. Curr Biol, 2019, 29(7): R231-R236.
    [11] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
    [12] Bagal V, Aggarwal R, Vinod PK, et al. MolGPT: molecular generation using a transformer-decoder model[J]. J Chem Inf Model, 2022, 62(9): 2064-2076.
    [13] Hu J, Gao J, Fang XM, et al. DTSyn: a dual-transformer-based neural network to predict synergistic drug combinations[J]. Brief Bioinform, 2022, 23(5): bbac302.
    [14] Zaikis D, Vlahavas I. TP-DDI: transformer-based pipeline for the extraction of drug-drug interactions[J]. Artif Intell Med, 2021, 119: 102153.
    [15] Jiang LK, Jiang CZ, Yu XY, et al. DeepTTA: a transformer-based model for predicting cancer drug response[J]. Brief Bioinform, 2022, 23(3): bbac100.
    [16] Zhang ZH, Chen LF, Zhong FS, et al. Graph neural network approaches for drug-target interactions[J]. Curr Opin Struct Biol, 2022, 73: 102327.
    [17] Yang ZD, Zhong WH, Zhao L, et al. MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity prediction[J]. Chem Sci, 2022, 13(3): 816-833.
    [18] Jorgensen WL. Challenges for academic drug discovery[J]. Angew Chem Int Ed Engl, 2012, 51(47): 11680-11684.
    [19] Yan JL, Bhadra P, Li A, et al. Deep-AmPEP30: improve short antimicrobial peptides prediction with deep learning[J]. Mol Ther Nucleic Acids, 2020, 20: 882-894.
    [20] Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors[J]. Nat Biotechnol, 2019, 37(9): 1038-1040.
    [21] Yoshimori A, Bajorath J. Deep SAR matrix: SAR matrix expansion for advanced analog design using deep learning architectures[J]. Future Drug Discov, 2020. doi:10.4155/fdd-2020-0005.
    [22] Yoshimori A, Miljkovi? F, Bajorath J. Approach for the design of covalent protein kinase inhibitors via focused deep generative modeling[J]. Molecules, 2022, 27(2): 570.
    [23] Kennedy K, Cal R, Casey R, et al. The anti-ageing effects of a natural peptide discovered by artificial intelligence[J]. Int J Cosmet Sci, 2020, 42(4): 388-398.
    [24] Rein D, Ternes P, Demin R, et al. Artificial intelligence identified peptides modulate inflammation in healthy adults[J]. Food Funct, 2019, 10(9): 6030-6041.
    [25] Casey R, Adelfio A, Connolly M, et al. Discovery through machine learning and preclinical validation of novel anti-diabetic peptides[J]. Biomedicines, 2021, 9(3): 276.
    [26] Al-Khdhairawi A, Sanuri D, Akbar R, et al. Machine learning and molecular simulation ascertain antimicrobial peptide against Klebsiella pneumoniae from public database[J]. Comput Biol Chem, 2023, 102: 107800.
    [27] Yuan QT, Chen KY, Yu YM, et al. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding[J]. Brief Bioinform, 2023, 24(1): bbac630.
    [28] Huang JJ, Xu YC, Xue YF, et al. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences[J]. Nat Biomed Eng, 2023.doi:10.1038/s41551-022-00991-2.
    [29] Krishnan K, Kassab R, Agajanian S, et al. Interpretable machine learning models for molecular design of tyrosine kinase inhibitors using variational autoencoders and perturbation-based approach of chemical space exploration[J]. Int J Mol Sci, 2022, 23(19): 11262.
    [30] Kleandrova VV, Scotti MT, Scotti L, et al. Multi-target drug discovery via PTML modeling: applications to the design of virtual dual inhibitors of CDK4 and HER2[J]. Curr Top Med Chem, 2021, 21(7): 661-675.
    [31] Xing GM, Liang L, Deng CL, et al. Activity prediction of small molecule inhibitors for antirheumatoid arthritis targets based on artificial intelligence[J]. ACS Comb Sci, 2020, 22(12): 873-886.
    [32] Lien ST, Lin TE, Hsieh JH, et al. Establishment of extensive artificial intelligence models for kinase inhibitor prediction: identification of novel PDGFRB inhibitors[J]. Comput Biol Med, 2023, 156: 106722.
    [33] Goh GB, Hodas NO, Vishnu A. Deep learning for computational chemistry[J]. J Comput Chem, 2017, 38(16): 1291-1307.
    [34] Arul Murugan N, Ruba Priya G, Narahari Sastry G, et al. Artificial intelligence in virtual screening: models versus experiments[J]. Drug Discov Today, 2022, 27(7): 1913-1923.
    [35] Serafim MSM, Kronenberger T, Oliveira PR, et al. The application of machine learning techniques to innovative antibacterial discovery and development[J]. Expert Opin Drug Discov, 2020, 15(10): 1165-1180.
    [36] Arcon JP, Modenutti CP, Avenda?o D, et al. AutoDock Bias: improving binding mode prediction and virtual screening using known protein-ligand interactions[J]. Bioinformatics, 2019, 35(19): 3836-3838.
    [37] Arcon JP, Defelipe LA, Lopez ED, et al. Cosolvent-based protein pharmacophore for ligand enrichment in virtual screening[J]. J Chem Inf Model, 2019, 59(8): 3572-3583.
    [38] Zhang HP, Liao LB, Cai YT, et al. IVS2vec: a tool of Inverse Virtual Screening based on word2vec and deep learning techniques[J]. Methods, 2019, 166: 57-65.
    [39] Gong JN, Zhao L, Chen GX, et al. A novel artificial intelligence protocol to investigate potential leads for diabetes mellitus[J]. Mol Divers, 2021, 25(3): 1375-1393.
    [40] Beck BR, Shin B, Choi Y, et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model[J]. Comput Struct Biotechnol J, 2020, 18: 784-790.
    [41] Lamontagne F, Agarwal A, Rochwerg B, et al. A living WHO guideline on drugs for covid-19[J]. BMJ, 2020, 370: m3379.
    [42] Roessler HI, Knoers NVAM, van Haelst MM, et al. Drug repurposing for rare diseases[J]. Trends Pharmacol Sci, 2021, 42(4): 255-267.
    [43] Brasil S, Allocca M, Magrinho SCM, et al. Systematic review: drug repositioning for congenital disorders of glycosylation (CDG)[J]. Int J Mol Sci, 2022, 23(15): 8725.
    [44] Ancuceanu R, Hovanet MV, Anghel AI, et al. Computational models using multiple machine learning algorithms for predicting drug hepatotoxicity with the DILIrank dataset[J]. Int J Mol Sci, 2020, 21(6): 2114.
    [45] Chen MM, Yang ZY, Gao YX, et al. Fast identification of adverse drug reactions (ADRs) of digestive and nervous systems of organic drugs by in silico models[J]. Molecules, 2021, 26(4): 930.
    [46] Gong XJ, Hu M, Liu JZ, et al. Decoding kinase-adverse event associations for small molecule kinase inhibitors[J]. Nat Commun, 2022, 13(1): 4349.
    [47] Nguyen M, Long SW, McDermott PF, et al. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella[J]. J Clin Microbiol, 2019, 57(2): e01260-e01218.
    [48] Weis C, Cuénod A, Rieck B, et al. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning[J]. Nat Med, 2022, 28(1): 164-174.
    [49] Yang ZY, Ye ZF, Xiao YJ, et al. SPLDExtraTrees: robust machine learning approach for predicting kinase inhibitor resistance[J]. Brief Bioinform, 2022, 23(3): bbac050.
    [50] Sui QH, Chen ZC, Hu ZY, et al. Cisplatin resistance-related multi-omics differences and the establishment of machine learning models[J]. J Transl Med, 2022, 20(1): 171.
    [51] Yu T, Fu Y, He JT, et al. Identification of antibiotic resistance in ESKAPE pathogens through plasmonic nanosensors and machine learning[J]. ACS Nano, 2023, 17(5): 4551-4563.
    [52] Chandrasekaran S, Cokol-Cakmak M, Sahin N, et al. Chemogenomics and orthology-based design of antibiotic combination therapies[J]. Mol Syst Biol, 2016, 12(5): 872.
    [53] Ma SY, Jaipalli S, Larkins-Ford J, et al. Transcriptomic signatures predict regulators of drug synergy and clinical regimen efficacy against tuberculosis[J]. mBio, 2019, 10(6): e02627-e02619.
    [54] Li XB, Dowling EK, Yan GH, et al. Precision combination therapies based on recurrent oncogenic coalterations[J]. Cancer Discov, 2022, 12(6): 1542-1559.
    [55] Zhang TY, Zhang LW, Payne PRO, et al. Synergistic drug combination prediction by integrating multiomics data in deep learning models[J]. Methods Mol Biol, 2021, 2194: 223-238.
    [56] Bate A. Bayesian confidence propagation neural network[J]. Drug Saf, 2007, 30(7): 623-625.
    [57] Wu ZX, Zhu MF, Kang Y, et al. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets[J]. Brief Bioinform, 2021, 22(4): bbaa321.
    [58] Lugagne JB, Dunlop MJ. Anticipating antibiotic resistance[J]. Science, 2022, 375(6583): 818-819.
    [59] Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application[J]. Chin J Nat Med, 2013, 11(2): 110-120.
    [60] Ren SJ, Wu SL, Weng QH. Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships[J]. Bioresour Technol, 2023, 369: 128472.
  • 期刊类型引用(3)

    1. 吴腾. 生成式人工智能技术赋能智慧医疗建设的风险与规制. 医学与社会. 2025(03): 9-16 . 百度学术
    2. 许情,吕敏,邓虹霄,胡驰,向平,陈航. 机器学习在合成大麻素识别鉴定中的应用进展. 中国药科大学学报. 2024(03): 316-325 . 本站查看
    3. 宋勇刚,邹小伟. 基于数据与模型驱动的数智中医药发展研究. 时珍国医国药. 2024(11): 2639-2642 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1034
  • HTML全文浏览量:  31
  • PDF下载量:  436
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-04-09
  • 修回日期:  2023-06-11
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回