• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

骨髓间充质干细胞源性外泌体促进小胶质细胞/巨噬细胞M2极化抑制急性期脑缺血大鼠炎症反应

孙逸梅, 毛诗慧, 李琳, 江伟锋, 储利胜

孙逸梅, 毛诗慧, 李琳, 江伟锋, 储利胜. 骨髓间充质干细胞源性外泌体促进小胶质细胞/巨噬细胞M2极化抑制急性期脑缺血大鼠炎症反应[J]. 中国药科大学学报, 2023, 54(5): 599-606. DOI: 10.11665/j.issn.1000-5048.2023041703
引用本文: 孙逸梅, 毛诗慧, 李琳, 江伟锋, 储利胜. 骨髓间充质干细胞源性外泌体促进小胶质细胞/巨噬细胞M2极化抑制急性期脑缺血大鼠炎症反应[J]. 中国药科大学学报, 2023, 54(5): 599-606. DOI: 10.11665/j.issn.1000-5048.2023041703
SUN Yimei, MAO Shihui, LI Lin, JIANG Weifeng, CHU Lisheng. Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response[J]. Journal of China Pharmaceutical University, 2023, 54(5): 599-606. DOI: 10.11665/j.issn.1000-5048.2023041703
Citation: SUN Yimei, MAO Shihui, LI Lin, JIANG Weifeng, CHU Lisheng. Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response[J]. Journal of China Pharmaceutical University, 2023, 54(5): 599-606. DOI: 10.11665/j.issn.1000-5048.2023041703

骨髓间充质干细胞源性外泌体促进小胶质细胞/巨噬细胞M2极化抑制急性期脑缺血大鼠炎症反应

基金项目: 国家自然科学基金资助项目(No.81274113,No.81873028);浙江省公益技术应用研究计划资助项目(No.2016C33185)

Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response

Funds: This study was supported by the National Natural Science Foundation of China (No.81274113, No.81873028) and the Public Welfare Technology Application Research Project of Zhejiang Province (No.2016C33185)
  • 摘要: 为探究骨髓间充质干细胞(bone marrow meaenchymal stem cells, BMSCs)源性外泌体(exosomes, Exos)对急性期脑缺血大鼠小胶质细胞/巨噬细胞M1/M2极化的影响,采用超高速离心法分离提取外泌体并鉴定;采用线栓法制备大鼠大脑中动脉阻塞(middle cerebral artery occlusion, MCAO)模型;采用Longa评分和角实验评价大鼠神经功能,2,3,5-氯化三苯基四氮唑(2, 3, 5-triphenyltetrazole chloride, TTC)染色检测大鼠脑梗死体积;采用CD16/32/Iba1、CD206/Iba1免疫荧光双标法检测小胶质细胞/巨噬细胞M1/M2表型;采用RT-qPCR检测大鼠脑缺血周边区CD86、诱导型一氧化氮合酶(inducible nitricoxide synthase, iNOS)、肿瘤坏死因子-α(tumor necrosis factor, TNF-α)、精氨酸酶1(arginase-1, Arg-1)、白细胞介素-10(interleukin-10, IL-10)和转化生长因子β(transforming growth factor beta, TGF-β)的mRNA表达。实验结果表明,BMSC-Exos减少缺血周边区CD16/32+/Iba1+阳性细胞数量(P < 0.01),增加CD206+/Iba1+阳性细胞数量(P < 0.01),减少iNOS、CD86和TNF-α的mRNA表达,增加Arg-1、TGF-β和IL-10的mRNA表达(P < 0.05或P < 0.01)。本研究提示BMSC-Exos调控急性期脑缺血大鼠小胶质细胞/巨噬细胞M1/M2极化,减轻神经炎症,改善脑缺血损伤。
    Abstract: The aim of the present study was to investigate the effects of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) on the polarization of M1/M2 microglia/macrophages in rats with acute cerebral ischemia.Ultrahigh-speed centrifugation was employed to isolate and identify exosomes; a middle cerebral artery occlusion (MCAO) model was prepared in rats using the intraluminal filament technique; Longa scoring and corner tests were used to evaluate the neurological function of rats; 2, 3, 5-triphenyltetrazole chloride (TTC) staining was used to assess the infarct volume in rat brains; immunofluorescence double-labeling of CD16/32/Iba1 and CD206/Iba1 was performed to detect M1/M2 phenotypes of microglia/macrophages; RT-qPCR was employed to measure the mRNA expression of CD86, inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), arginase-1 (Arg-1), interleukin-10 (IL-10), and transforming growth factor beta (TGF-β) in the ischemic penumbra of rat brains.The experimental results showed that BMSC-Exos reduced the number of CD16/32+/Iba1+ positive cells in the ischemic penumbra (P < 0.01) while increasing the number of CD206+/Iba1+positive cells (P < 0.01), and decreased the mRNA expression of iNOS, CD86, and TNF-α, while increasing the mRNA expression of Arg-1, TGF-β, and IL-10 (P < 0.05 or P < 0.01).This research suggests that BMSC-Exos can regulate M1/M2 polarization of microglia/macrophages in rats with acute cerebral ischemia, alleviate neuroinflammation, and improve ischemic brain injury.
  • [1] Wang LD,Peng Bin, Zhang Hongqi, et al. Brief report on stroke prevention and treatment in China, 2020[J]. Chin J Cerebrovasc Dis (中国脑血管病杂志), 2022, 19(2): 136-144.
    [2] Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments[J]. Neuron, 2010, 67(2): 181-198.
    [3] Fan WX. Research progress on the mechanism of ischemic stroke[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(6): 751-759.
    [4] Venkat P, Shen Y, Chopp M, et al. Cell-based and pharmacological neurorestorative therapies for ischemic stroke[J]. Neuropharmacology, 2018, 134(Pt B): 310-322.
    [5] Nayak D, Roth TL, McGavern DB. Microglia development and function[J]. Annu Rev Immunol, 2014, 32: 367-402.
    [6] Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311.
    [7] Wang ML, Pan W, Xu Y, et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15: 3083-3094.
    [8] Kuroda S. Current opinion of bone marrow stromal cell transplantation for ischemic stroke[J]. Neurol Med Chir, 2016, 56(6): 293-301.
    [9] Liu ZQ, Li X, Ye ZX, et al. Neuroprotective effect of exosomes derived from bone marrow mesenchymal stem cells via activating TGR5 and suppressing apoptosis[J]. Biochem Biophys Res Commun, 2022, 593: 13-19.
    [10] Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function[J]. Stem Cell Res Ther, 2016, 7(1): 125.
    [11] Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820(7): 940-948.
    [12] Oveili E, Vafaei S, Bazavar H, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases[J]. Cell Commun Signal, 2023, 21(1): 20.
    [13] Hu H, Hu XW, Li L, et al. Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of miR-21-5p[J]. Biomolecules, 2022, 12(7): 883.
    [14] Li L, Chu LS, Fang Y, et al. Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats[J]. Stem Cell Res Ther, 2017, 8(1): 112.
    [15] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91.
    [16] Niu QF, Yang Y, Li DL, et al. Exosomes derived from bone marrow mesenchymal stem cells alleviate ischemia-reperfusion injury and promote survival of skin flaps in rats[J]. Life, 2022, 12(10): 1567.
    [17] Zheng JL, Zhang XJ, Cai WF, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-29b-3p promotes angiogenesis and ventricular remodeling in rats with myocardial infarction by targeting ADAMTS16[J]. Cardiovasc Toxicol, 2022, 22(8): 689-700.
    [18] Liu XY, Wu CH, Zhang YS, et al. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis[J]. Carbohydr Polym, 2023, 306: 120578.
    [19] Gaire BP. Microglia as the critical regulators of neuroprotection and functional recovery in cerebral ischemia[J]. Cell Mol Neurobiol, 2022, 42(8): 2505-2525.
    [20] Price CJ, Wang DC, Menon DK, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke[J]. Stroke, 2006, 37(7): 1749-1753.
    [21] Gulyás B, Tóth M, Schain M, et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [((11)) C]vinpocetine[J]. J Neurol Sci, 2012, 320(1/2): 110-117.
    [22] Hu XM, Li PY, Guo YL, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J]. Stroke, 2012, 43(11): 3063-3070.
    [23] Bai XJ, Hao L, Guo YE, et al. Bone marrow stromal cells reverse the microglia type from pro-inflammatory tumour necrosis factor a microglia to anti-inflammatory CD206 microglia of middle cerebral artery occlusion rats through triggering secretion of CX3CL1[J]. Folia Neuropathol, 2021, 59(1): 20-31.
    [24] Yang Y, Bao HY, Jin HQ, et al. Bone marrow-derived mesenchymal stem cells promote microglia/macrophage M2 polarization and enhance neurogenesis in the acute and chronic stages after ischemic stroke[J]. Clin Complementary Med Pharmacol, 2022, 2(4): 100040.
    [25] Liu YY, Li Y, Wang L, et al. Mesenchymal stem cell-derived exosomes regulate microglia phenotypes: a promising treatment for acute central nervous system injury[J]. Neural Regen Res, 2023, 18(8): 1657-1665.
    [26] Wang YW, Wang XY, Zou ZH, et al. Conditioned medium from bone marrow mesenchymal stem cells relieves spinal cord injury through suppression of Gal-3/NLRP3 and M1 microglia/macrophage polarization[J]. Pathol Res Pract, 2023, 243: 154331.
    [27] Wen L, Wang YD, Shen DF, et al. Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury[J]. Neural Regen Res, 2022, 17(12): 2717-2724.
计量
  • 文章访问数:  525
  • HTML全文浏览量:  11
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-16
  • 修回日期:  2023-10-17
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭