• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

雷公藤红素抗肿瘤类衍生物研究进展

张雪玲, 李娜, 陈莉

张雪玲,李娜,陈莉. 雷公藤红素抗肿瘤类衍生物研究进展[J]. 中国药科大学学报,2024,55(6):826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802
引用本文: 张雪玲,李娜,陈莉. 雷公藤红素抗肿瘤类衍生物研究进展[J]. 中国药科大学学报,2024,55(6):826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802
ZHANG Xueling, LI Na, CHEN Li. Progress of research on celastrol derivatives as anti-tumor agents[J]. J China Pharm Univ, 2024, 55(6): 826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802
Citation: ZHANG Xueling, LI Na, CHEN Li. Progress of research on celastrol derivatives as anti-tumor agents[J]. J China Pharm Univ, 2024, 55(6): 826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802

雷公藤红素抗肿瘤类衍生物研究进展

基金项目: 国家自然科学基金项目(No.82104027);江苏省自然科学基金项目(BK20221523)
详细信息
    通讯作者:

    陈莉: Tel:13814083082 E-mail:chenli627@cpu.edu.cn

  • 中图分类号: R914

Progress of research on celastrol derivatives as anti-tumor agents

Funds: This study was supported by the National Natural Science Foundation of China (No.82104027);and the Natural Science Foundation of Jiangsu Province (BK20221523)
  • 摘要:

    雷公藤红素是从中药雷公藤Tripterygium wilfordii Hook.f.根皮中分离得到的五环三萜类化合物,可抑制多种恶性肿瘤的生长,但也存在毒性大、水溶性差、靶向性欠佳等缺陷。因此,对其进行结构修饰是近年来的研究热点。已报道的雷公藤红素结构修饰主要集中在C-20-COOH及AB环的C-2、C-3、C-6位或多位点同时优化。本文主要依据不同的修饰位点、修饰目的(提高Hsp90-Cdc37 PPI抑制作用等)和修饰手段(基于骈和原理和特定靶点等),综述近年来雷公藤红素抗肿瘤类衍生物的研究进展。此外,还简要讨论了衍生物的抗肿瘤活性、作用机制和构效关系,以期能够为发现新的高效、低毒、选择性强的CEL衍生物提供理论指导。

    Abstract:

    Celastrol, a pentacyclic triterpenoid compound derived from the root of Chinese herb Tripterygium wilfordii Hook.f.,can inhibit the growth of various types of malignant tumors. However, it still has some limitations, including high toxicity, poor water solubility, and low targeting efficiency. Therefore, structural modification of celastrol has become a research hotspot in recent years. The structural modifications of celstrol reported have focused on C-20-COOH and C-2, C-3, C-6 or multiple sites of AB ring. This review provides an overview of the research progress of anti-tumor celastrol derivatives in recent years according to different structural modification sites and purposes, such as enhancing the inhibitory effect on the Hsp90-Cdc37 protein-protein interaction, and modification methods, including principles of parallelism and targeting specific sites. In addition, it briefly discusses the antitumor activity, mechanism of action, and structure-activity relationship of these derivatives, aiming to provide theoretical guidance for the discovery of new celastrol derivatives with high efficiency, low toxicity, and strong selectivity.

  • 中枢神经系统由神经元和神经胶质细胞两大类组成,神经胶质细胞主要包括星形胶质细胞、小胶质细胞、少突胶质细胞等。小胶质细胞占神经胶质细胞总数的10%~15%,是存在于中枢神经系统内的单核巨噬细胞[1]。正常生理状态下小胶质细胞呈现分枝状并发挥免疫监视作用以维持中枢神经系统的稳态;病理状态下,小胶质细胞能够被β-淀粉样蛋白(amyloid β, Aβ)、α-突触核蛋白(α-synuclein, α-Syn)等错误折叠的蛋白质、细胞碎片以及细菌细胞壁脂多糖(lipopolysaccharide, LPS)等异常激活[23]。受损或异常激活的小胶质细胞引发中枢神经系统内的系列炎症反应即神经炎症,已有研究证明神经炎症始终伴随在阿尔茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)等神经退行性疾病发生发展的整个过程中,并造成神经元丢失和Aβ病理及微管相关蛋白Tau病理加重[45]

    激活的小胶质细胞会产生不同的表型,在瞬息万变的脑环境中,精确区分并调节小胶质细胞的表型对治疗AD至关重要[6]。神经炎症初期,小胶质细胞由静息状态激活至M1表型,此时的小胶质细胞分枝缩短变粗,胞体增大并释放大量肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素6(interleukin 6, IL-6)和白细胞介素1β(IL-1β)等促炎细胞因子,这些毒性物质可以消灭入侵的病原体[7]。然而,随着时间推移急性炎症转化为慢性炎症,小胶质细胞的慢性活化以及过度积累的毒性促炎细胞因子会导致神经元损伤[8]。小胶质细胞还可以通过替代激活途径被激活至M2表型,此时的小胶质细胞分泌白细胞介素10(IL-10)、精氨酸酶1(arginase 1, ARG1)等抗炎细胞因子,起到神经保护和组织修复的作用[9],提示逆转小胶质细胞过度激活、调节小胶质细胞极化表型对治疗胶质增多症及AD有着重要作用。

    IL-27是IL-12家族中的一种异二聚体细胞因子,由称为EB病毒诱导蛋白3(Epstein-Barr virus-induced protein 3,EBI3)和称为p28的p35相关蛋白组成[10]。IL-27与由gp130和白细胞介素-27受体α(IL-27Rα)组成的异二聚体受体复合物结合,IL-27Rα主要存在于巨噬细胞、小胶质细胞、B细胞等炎症细胞表面[11]。IL-27的功能最初被认为参与Th1细胞的早期发育[12],最近的研究表明IL-27在小鼠缺血性脑卒中模型、小鼠脑出血模型中增加神经元存活率,降低了神经功能缺损和脑部病理[11,13],而其对小胶质细胞作用还有待探究。本研究旨在观察IL-27对LPS或Aβ1-42诱导小胶质细胞过度激活的影响。

    DMEM高糖培养基(美国Gibco公司);胎牛血清(以色列Biological Industries公司);LPS(美国Sigma公司);IL-27(美国MCE公司);Aβ1-42(上海吉尔生化有限公司);BCA蛋白浓度检测试剂盒、RIPA裂解液、SDS-PAGE蛋白上样缓冲液(5×,上海碧云天生物技术有限公司);一步法凝胶制备试剂盒、ECL发光液(杭州福德生物科技有限公司);蛋白Marker(美国Thermo公司);PVDF膜、蛋白酶抑制剂、磷酸酶抑制剂(美国Millipore公司);总RNA提取试剂盒EasyPure RNA Kit(北京全式金生物技术有限公司);HIScriptⅢ RT SuperMix for qPCR(+gDNA wiper)逆转录试剂盒、Taq Pro Universal SYBR qPCR Master Mix RT-qPCR试剂盒(南京诺唯赞生物技术股份有限公司);TNF-α、IL-6、IL-1β ELISA检测试剂盒、TNF-α抗体、IL-1β抗体、β-actin抗体(爱博泰克生物公司);Iba1抗体、NF-кB抗体、p- NFкB抗体、IкBα抗体、p-кBα抗体、山羊抗兔IgG、山羊抗鼠IgG(美国Cell Signaling Technology公司);其余试剂均为国产市售分析纯。

    全波长酶标仪、PCR仪、RT-qPCR仪、Nanodrop微量分光光度计(美国Thermo公司);电泳仪、转膜仪(美国Bio-Rad公司);化学发光成像系统(中国Tanon公司);氮吹仪(上海安谱实验科技股份有限公司)。

    小鼠小胶质细胞BV-2购自上海iCELL公司。

    SPF级C57BL/6小鼠,5~6周龄,雄性,购自江苏集萃药康生物科技股份有限公司,实验动物使用许可证号:SCXK(苏)2023-0009。小鼠饲养于独立通风笼盒,实验室温度24~26 ℃,相对湿度60%~80%,保持12 h昼夜交替,给予标准饲料及饮用水。所有动物实验均符合动物伦理委员会标准。

    准确称量Aβ1-42 2.0 mg并加入六氟异丙醇500 mL,涡旋后超声10 min使其充分溶解,放置于4 ℃过夜。次日用氮吹仪进行氮吹以充分去除管内六氟异丙醇,−80 ℃放置2 h后放入冻干机冻干。将冻干的Aβ1-42复溶于DMSO中,进行涡旋并超声10 min使其充分溶解,加入已过滤的PBS稀释后置4 ℃冰箱寡聚24 h,BCA法测定蛋白浓度。

    将实验室保藏的BV-2细胞从液氮罐中取出后放入37~42 ℃温水中迅速摇动使其快速融化,室温1000 r/min离心5 min后用含有10%胎牛血清的DMEM高糖培养基重悬并接种至T25细胞瓶中,置含5% CO2的细胞培养箱中37 ℃培养。

    细胞汇合度约80%时即可传代。弃去细胞瓶中培养基,用PBS润洗细胞后加入含有10%胎牛血清的DMEM高糖培养基3 mL,用移液枪轻柔地将细胞从壁上吹下,按照1∶3的比例传代至T25细胞瓶中,置于含5% CO2的细胞培养箱中37 ℃培养。

    细胞汇合度约80%时即可冻存。按“2.2.2”项下方法获得细胞悬液后,室温1000 r/min离心5 min,弃去上清液,向离心管中加入细胞冻存液后轻轻吹打混匀,按每管1.5 mL加入冻存管中后封口膜封口,在管上标记细胞名称、代数、日期等信息后于−80 ℃或液氮中保存。

    将BV-2细胞按每孔5×105个的密度接种于六孔板中,并设置分组如下:空白对照组、LPS(100 ng/mL)组、LPS(100 ng/mL)+IL-27(5 ng/mL)组,造模及药物干预12 h;空白对照组、Aβ1-42(5 μmol/L)组、Aβ1-42(5 μmol/L)+IL-27(5 ng/mL)组,造模及药物干预24 h。

    小鼠适应性饲养1周后随机分为空白对照组、模型组(LPS组)、给药组(LPS +IL-27组),每组各12只。IL-27组侧脑室注射IL-27(10 ng/μL,每侧2 μL),术前12h禁食不禁水,麻醉小鼠后将其固定于脑立体定位注射仪上,剔除颅顶毛发后用碘伏消毒,剪开头皮暴露出前囟,在前囟后侧0.5 mm,矢状缝两侧1.0 mm处进行钻孔,微量进样器垂直进入侧脑室后缓慢注射IL-27,缝合伤口;空白对照组和LPS组注射等体积生理盐水,其余操作同给药组。

    模型组和给药组于术后第1天开始腹腔注射LPS(1 mg/kg),共4 d。空白对照组按照相同方式注射等体积生理盐水。

    细胞铺板、分组同“2.3”项。造模及IL-27干预后,提取细胞总蛋白。弃去六孔板内的培养基并用预冷的PBS润洗细胞3次,每孔内加入含有磷酸酶抑制剂和蛋白酶抑制剂的RIPA裂解液100 μL,用刮刀将细胞刮下后转移至提前预冷的1.5 mL EP管中并放置于冰上裂解30 min。将细胞裂解液于4 ℃,12000 r/min离心20 min后小心吸取上清液并通过BCA法测定蛋白浓度,加入1/4体积的5×上样缓冲液后金属浴95 ℃煮沸10 min。配制SDS-PAGE胶并以80 V恒压完成电泳,以300 mA恒流湿转法将条带转移至PVDF膜上,取出PVDF膜用5% BSA封闭液封闭2 h,使用新配制的TBST洗膜5次,孵育TNF-α、IL-1β、NF-κB、p-NF-κB、IκBα、p-IκBα一抗,于4 ℃过夜。次日洗膜后加入与一抗对应的山羊抗兔二抗或山羊抗鼠二抗孵育2 h,洗膜5次,滴加ECL发光液进行成像。

    动物分组、给药同 “2.4”项。造模及给药完成后处死小鼠,迅速取小鼠全脑后置于4 mL EP管内,每管加入含有磷酸酶抑制剂和蛋白酶抑制剂的RIPA裂解液2 mL,使用手术剪将脑组织剪碎后用组织匀浆机充分研磨脑组织,于冰上涡旋裂解,提取并测定组织总蛋白。制样和电泳等操作同“2.5.1”项。

    细胞铺板、分组同“2.3”项。造模及IL-27干预后,按照总提取试剂盒说明书提取细胞内总RNA,于微量分光光度计上测定RNA浓度后,按照HIScriptⅢ RT SuperMix for qPCR(+gDNA wiper)试剂盒进行逆转录获得cDNA。按照Taq Pro Universal SYBR qPCR Master Mix试剂盒进行RT-qPCR。首先配制2×Taq Pro Universal SYBR qPCR Master Mix和引物的混合反应体系,混合均匀后在96孔半裙边板中加入混合体系8 μL/孔,再加入模板cDNA (每孔2 μL)。反应程序如下:预变性95 ℃ 30 s;模板变性95 ℃ 10 s,退火60 ℃ 30 s,循环40次;绘制溶解曲线95 ℃ 15 s,60 ℃ 60 s,95 ℃ 15 s。使用2−ΔΔCt法计算目的基因相对表达量。引物序列参见表1

    Table  1.  Primer sequences for RT- PCR
    Biological indicator Forward primer (5'→3') Reverse primer (5'→3')
    TnfTTGGTGGTTTGTGAGTGTGAGGACGTGGAACTGGCAGAAGAG
    Il6TTGGTCCTTAGCCACTCCTTTAGTCCTCCTACCCCAATT
    Il1bATCTTTTGGGGTCCGTCAACTGCAACTGTTCCTGAACTCAACT
    Nos2GTGGACGGGTCGATGTCACGTTCTCAGCCCAACAATACAAA
    Nlrp3ACAAGCCTTTGCTCCAGACCCTATTGCTCTTCACTGCTATCAAGCCCT
    Fcgr2bGGGAACCAATCTCGTAGTGTCTGTCCAGAAAGGCCAGGATCTAGTG
    Cd86GAGCGGGATAGTAACGCTGAGGCTCTCACTGCCTTCACTC
    Fcgr3GTCCAGTTTCACCACAGCCTTCGCCAATGGCTACTTCCACCAC
    Chil3GGGCATACCTTTATCCTGAGCCACTGAAGTCATCCATGTC
    Il10GGTTGCCAAGCCTTATCGGAACCTGCTCCACTGCCTTGCT
    Arg1GTGAAGAACCCACGGTCTGTCTGGTTGTCAGGGGAGTGTT
    ActbAGCCATGTACCTAGCCATCCTTTGATGTCACGCACGATTT
    下载: 导出CSV 
    | 显示表格

    动物分组、给药同“2.4”项。造模及给药完成后处死小鼠,迅速取小鼠全脑后置于研钵中,加入液氮后充分研磨使其成为匀浆。提取RNA、逆转录及RT-qPCR同“2.6.1”项。

    动物分组、给药同“2.4”项。造模及给药完成后处死小鼠,迅速取小鼠全脑后置于4 mL EP管内,每管加入PBS2 mL,使用手术剪将脑组织剪碎后用组织匀浆机充分研磨脑组织,4 ℃,12000 r/min离心20 min后小心吸取上清液,按照ELISA试剂盒说明书测定小鼠脑内TNF-α、IL-1β和IL-6的表达水平。

    动物分组、给药同“2.4”项。造模及给药完成后处死小鼠,迅速取小鼠全脑并放置于4%多聚甲醛中室温固定24 h。用石蜡将组织包埋,并进行切片、封闭、孵育抗体、DAB显色、复染细胞核和封片等操作,使用扫描仪扫描切片。

    通过GEO数据库中的GSE48350数据集分析IL-27在正常人和AD患者脑内的差异表达情况。在海马区,正常组AD组各19例;在内嗅皮层区,正常组19例,AD组15例;在额叶皮层区,正常组27例,AD组21例。

    实验数据使用GraphPad Prism 9.0进行统计分析和作图,每组数据(至少3次独立实验)以$\bar{x} $ ± s表示。多组样本间采用单因素方差分析,以P < 0.05认为有统计学意义。

    使用GEO数据库GSE48350数据集分析IL-27在正常人和AD患者脑内的差异表达情况,结果如图1所示,相较于正常人,AD患者海马体、内嗅皮层以及额叶皮层中的IL-27含量降低[14]

    Figure  1.  Analysis of IL-27 expression in the brains of normal and Alzheimer’s disease(AD) patients. In Hippocampus region, control group n=19, AD group n=19. In the entorhinal cortex region, control group n=19, AD group n=15. In the frontal cortex region, control group n=27, AD group n=21. (ns: no significance vs control group)

    为检测IL-27对小胶质细胞异常激活及神经炎症的影响,使用LPS诱导小鼠并给予IL-27。收集小鼠脑组织进行免疫组化,检测小鼠脑内Iba1表达量,结果如图2所示。与空白对照组相比,LPS组小鼠海马中Iba1+小胶质细胞数量增加;与LPS组相比,IL-27组小鼠海马中Iba1+小胶质细胞数量下降。证明IL-27能缓解小鼠脑内由LPS诱导的小胶质细胞异常激活。

    Figure  2.  Effect of IL-27 on activation of microglia in lipopolysaccharide(LPS)-induced mice brain
    A: Expression of Iba1 in the brain of normal mice, LPS-induced inflammation mice, and IL-27 treated mice after LPS-induced inflammation was detected by immunohistochemistry (Scale bar=100 μm); B: Quantitative analysis of Iba1+ levels in A ($\bar{x} $ ± s, n=3, ###P < 0.001 vs control group; **P < 0.01 vs LPS group)

    相较于空白对照组,LPS组小鼠脑内促炎因子IL-1β、IL-6、TNF-α表达量显著增多;相较于LPS组,IL-27组小鼠脑内促炎因子IL-1β、IL-6、TNF-α表达量显著减少,结果如图3所示。说明IL-27能逆转LPS诱导的神经炎症。

    Figure  3.  Effect of IL-27 on the expression of inflammatory factors in the brain of mice induced by LPS ($\bar{x} $ ± s)
    A: mRNA levels of Il1b, Il6 and Tnf were detected by RT-qPCR; B: Levels of IL-1β, IL-6, TNF-α were detected by ELISA; C: Representative images of the levels of IL-1β, TNF-α were detected by Western blot; D-E: Quantitative analysis of protein levels of TNF-α/actin and IL-1β/actin(n=5 in ELISA, the other n=3) ###P < 0.001, ##P < 0.01 vs control group; ***P < 0.001, **P < 0.01 vs LPS group

    为检测IL-27对LPS诱导的小胶质细胞表型的影响,实验分为空白对照组、LPS(100 ng/mL)组和LPS(100 ng/mL)+ IL-27(5 ng/mL)组,造模及药物干预12 h。相较于空白对照组,LPS组M1型小胶质细胞标志物Il1bTnfNos2Nlrp3Fcgr2bCd86Fcgr3及M2型小胶质细胞标志物Il10Chil3Arg1的表达量显著增加,说明小胶质细胞由未激活的静息态被LPS激活;给予IL-27后,与LPS组相比,IL-27组M1型小胶质细胞标志物Il1bTnfNos2Nlrp3Fcgr2b的表达量显著减少,而M2型小胶质细胞标志物Il10Chil3Arg1的表达量进一步显著增加,结果如图4所示。说明IL-27能够将LPS激活的M1型小胶质细胞转变为M2型,逆转LPS诱导的小胶质细胞过度激活。

    Figure  4.  Effect of IL-27 on mRNA expression of M1/M2 cell markers in LPS-induced microglia ($\bar{x} $ ± s, n=3)
    A: mRNA levels of M1-specific makers Il1b, Tnf, Nos2, Nlrp3, Fcgr2b, Cd86 and Fcgr3 were detected by RT-qPCR; B: mRNA levels of M2-specific makers Il10, Chil3 and Arg1 were detected by RT-qPCR ###P < 0.001, ##P < 0.01, #P < 0.05 vs control group; ***P < 0.001, **P < 0.01, *P < 0.05 vs LPS group

    为检测IL-27对Aβ1-42诱导的小胶质细胞表型的影响,实验分为空白对照组、Aβ1-42(5 μmol/L)组和Aβ1-42(5 μmol/L)+IL-27(5 ng/mL)组,造模及药物干预24 h。相较于空白对照组,Aβ1-42组M1型小胶质细胞标志物Il1bTnfNlrp3Nos2及M2型小胶质细胞标志物Il10Chil3Arg1的表达量显著增加,说明小胶质细胞由未激活的静息态被Aβ1-42激活;给予IL-27后,与Aβ1-42组相比,IL-27组M1型小胶质细胞标志物Il1bTnfNlrp3的表达量显著减少,而M2型小胶质细胞标志物Il10Chil3Arg1的表达量显著增加,结果如图5所示。说明IL-27能够将Aβ1-42激活的M1型小胶质细胞转变为M2型,逆转Aβ1-42诱导的小胶质细胞过度激活。

    Figure  5.  Effect of IL-27 on mRNA expression of M1/M2 cell markers in Aβ1-42-induced microglia ($\bar{x} $ ± s, n=3)
    A: mRNA levels of M1-specific makers Il1b, Tnf, Nlrp3 and Nos2 were detected by RT-qPCR; B: mRNA levels M2-specific makers of Il10, Chil3 and Arg1 were detected by RT-qPCR ###P < 0.001, ##P < 0.01, #P < 0.05 vs control group; ***P < 0.001, **P < 0.01, *P < 0.05 vs1-42 group

    为探究IL-27改善小胶质细胞过度激活的途径,用Aβ1-42和IL-27孵育小胶质细胞24h。相较于空白对照组,Aβ1-42组小胶质细胞内NF-κB磷酸化、IκBα磷酸化水平显著增加;相较于Aβ1-42组,IL-27组小胶质细胞内NF-κB磷酸化、IκBα磷酸化水平显著下降;证明IL-27能够改善Aβ1-42诱导的NF-κB、IκBα异常激活。

    Figure  6.  Effect of IL-27 on activation of NF-κB, p-NF-κB, IκBα, and p-IκBα in microglia induced by Aβ1-42
    A: Levels of NF-κB, p-NF-κB, IκBα and p-IκBα were detected by Western blot; B-C: Quantitative analysis of protein levels of p-NF-κB/NF-κB and p-IκBα/ IκBα in A (`x ± s, n=3, ###P < 0.001, ##P < 0.01, #P < 0.05 vs control group; ***P < 0.001, **P < 0.01, *P < 0.05 vs1-42 group)

    LPS也称为内毒素,是革兰氏阴性菌外膜的主要成分,目前被认为是最有效的促炎刺激之一[15]。LPS在神经退行性疾病领域研究十分广泛,其主要通过由Toll样受体4(Toll-like receptor 4,TLR4)信号通路介导的小胶质细胞过度激活进而造成神经元死亡[16],同时还会造成海马和皮质内Aβ的积累[17]。而在AD患者脑内,小胶质细胞主要通过Toll样受体2(Toll-like receptor 2,TLR2)和TLR4识别Aβ[18],进而分泌大量神经毒性的促炎因子造成神经元损伤。因此,本研究选取LPS或Aβ1-42诱导的细胞以及LPS诱导的小鼠模型探究IL-27的抗炎作用。

    近年来许多科学家致力于IL-27在中枢神经系统中作用的研究,尽管其发挥作用的途径主要与调节T细胞的反应有关,但有研究指出IL-27还有可能作用于神经系统中的其他细胞[19]。同时,IL-27作为一种多效细胞因子,通过氧化应激、细胞凋亡、自噬、表观遗传修饰、调节细胞因子分泌与表达等多种途径影响神经元存活,且根据作用细胞不同,IL-27可能会产生相反的效果[20]。本研究发现IL-27能够促进LPS或Aβ1-42诱导的小胶质细胞从具有神经毒性M1表型转化为神经保护的M2表型,并抑制LPS诱导的小鼠脑内小胶质细胞过度激活及慢性神经炎症。

    核因子-κB(NF-κB)参与广泛的炎症反应,在AD中被认为是神经炎症恶性循环的核心[21]。在非激活状态下,NF-κB与其抑制因子IκB结合形成p65-p50-IκB三聚体,定位于胞质中且无法发挥作用;当受到细胞碎片、病原体、毒性细胞因子等的刺激后,由于磷酸化级联反应的作用,IκBα被蛋白酶体降解,使得p65-p50二聚体得以进入细胞核并且促进下游靶基因的转录[22]。大部分NF-kB的靶基因均为促炎细胞因子,由此引发慢性炎症进而导致神经元死亡[23]。本研究通过Western blot检测Aβ1-42诱导后IL-27对小胶质细胞内NF-κB、p-NF-κB、IκBα、p-IκBα的表达,发现IL-27能逆转Aβ1-42诱导的小胶质细胞内NF-κB、IκBα磷酸化水平。上述结果提示,IL-27可能通过IκB/NF- κB途径改善小胶质细胞过度激活。

    综上所述,本研究结果提示,IL-27改善LPS的诱导小鼠脑内小胶质细胞过度激活及M1型小胶质细胞介导的神经炎症,同时IL-27通过IκB/NF- κB途径逆转Aβ1-42诱导的小胶质细胞表型变化。

    《中国药科大学学报》入选2024年度“中国高校科技期刊
    建设示范案例库•百佳科技期刊”

  • 图  1   CEL-阿魏酸衍生物1~32的结构

    图  4   CEL-咪唑衍生物108~135的结构

    图  2   CEL-肉桂酸衍生物33~80的结构

    图  3   CEL-三氮唑衍生物81~107的结构

    图  5   CEL酯类和酰胺类衍生物136~158的结构

    图  6   CEL酯类衍生物159~173的结构

    图  7   CEL-NO供体衍生物174~184的结构

    图  8   CEL-噻唑烷二酮衍生物185~204的结构

    图  9   CEL C-20衍生物205~228的结构

    图  10   CEL-肉桂酰胺衍生物229~245的结构

    图  11   CEL-吡唑衍生物246~269的结构

    图  12   CEL-多肽衍生物270~280的结构

    图  13   CEL靶向Prdx1衍生物281~282的结构

    图  14   CEL C-20和C-3修饰衍生物283~313的结构

    图  15   CEL C-20衍生物329~343和C-3和C-20衍生物314~328的结构

    图  16   CEL多位点修饰衍生物344~364的结构

    图  17   CEL多位点修饰衍生物365~378的结构

    图  18   CEL多位点修饰衍生物379~405的结构

  • [1] Xu XM, Kang D, Zhu XY, et al. Effect of celastrol based on IRAK4/ERK/p38 signaling pathway on proliferation and apoptosis of multiple myeloma cells[J]. J Exp Hematol (中国实验血液学杂志), 2022, 30(1): 175-182.
    [2]

    Zhong YL, Xu GJ, Huang S, et al. Celastrol induce apoptosis of human multiple myeloma cells involving inhibition of proteasome activity[J]. Eur J Pharmacol, 2019, 853: 184-192. doi: 10.1016/j.ejphar.2019.03.036

    [3] Zhang XL, Li AP, Huan F, et al. Effects of celastrol on the proliferation and apoptosis of human leukemia cells HL-60 and Jurkat[J]. J China Pharm Univ (中国药科大学学报), 2015, 46(1): 89-93.
    [4]

    Wang X, Liu Q, Wu SS, et al. Identifying the effect of celastrol against ovarian cancer with network pharmacology and in vitro experiments[J]. Front Pharmacol, 2022, 13: 739478. doi: 10.3389/fphar.2022.739478

    [5]

    Arisan ED, Rencuzogullari O, Coban M, et al. The role of the PI3K/AKT/mTOR signaling axis in the decision of the celastrol-induced cell death mechanism related to the lipid regulatory pathway in prostate cancer cells[J]. Phytochem Lett, 2020, 39: 73-83. doi: 10.1016/j.phytol.2020.06.007

    [6]

    Tan QL, Liu ZQ, Gao XB, et al. Celastrol recruits UBE3A to recognize and degrade the DNA binding domain of steroid receptors[J]. Oncogene, 2022, 41(42): 4754-4767. doi: 10.1038/s41388-022-02467-8

    [7]

    Zhan DM, Ni TY, Wang HB, et al. Celastrol inhibits the proliferation and decreases drug resistance of cisplatin- resistant gastric cancer SGC7901/DDP cells[J]. Anticancer Agents Med Chem, 2022, 22(2): 270-279. doi: 10.2174/1871520621666210528144006

    [8]

    Chen GE, Zhu XY, Li JQ, et al. Celastrol inhibits lung cancer growth by triggering histone acetylation and acting synergically with HDAC inhibitors[J]. Pharmacol Res, 2022, 185: 106487. doi: 10.1016/j.phrs.2022.106487

    [9]

    Zhang WX, Wu ZM, Qi HJ, et al. Celastrol upregulated ATG7 triggers autophagy via targeting Nur77 in colorectal cancer[J]. Phytomedicine, 2022, 104: 154280. doi: 10.1016/j.phymed.2022.154280

    [10]

    Dai CH, Zhu LR, Wang Y, et al. Celastrol acts synergistically with afatinib to suppress non-small cell lung cancer cell proliferation by inducing paraptosis[J]. J Cell Physiol, 2021, 236(6): 4538-4554. doi: 10.1002/jcp.30172

    [11]

    Liu M, Fan YM, Li DY, et al. Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis[J]. Mol Oncol, 2021, 15(8): 2084-2105. doi: 10.1002/1878-0261.12936

    [12]

    Zhao ZC, Wang YM, Gong YY, et al. Celastrol elicits antitumor effects by inhibiting the STAT3 pathway through ROS accumulation in non-small cell lung cancer[J]. J Transl Med, 2022, 20(1): 525. doi: 10.1186/s12967-022-03741-9

    [13]

    Lim HY, Ong PS, Wang LZ, et al. Celastrol in cancer therapy: recent developments, challenges and prospects[J]. Cancer Lett, 2021, 521: 252-267. doi: 10.1016/j.canlet.2021.08.030

    [14]

    Lu Y, Liu Y, Zhou JW, et al. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol[J]. Med Res Rev, 2021, 41(2): 1022-1060. doi: 10.1002/med.21751

    [15]

    Sreeramulu S, Gande SL, Göbel M, et al. Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol[J]. Angew Chem Int Ed, 2009, 48(32): 5853-5855. doi: 10.1002/anie.200900929

    [16]

    Zhang T, Hamza A, Cao XH, et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells[J]. Mol Cancer Ther, 2008, 7(1): 162-170. doi: 10.1158/1535-7163.MCT-07-0484

    [17]

    Xu MY, Li N, Zhao ZH, et al. Design, synthesis and antitumor evaluation of novel celastrol derivatives[J]. Eur J Med Chem, 2019, 174: 265-276. doi: 10.1016/j.ejmech.2019.04.050

    [18]

    Li N, Xu MY, Wang B, et al. Discovery of novel celastrol derivatives as Hsp90-Cdc37 interaction disruptors with antitumor activity[J]. J Med Chem, 2019, 62(23): 10798-10815. doi: 10.1021/acs.jmedchem.9b01290

    [19]

    Li N, Chen C, Zhu HT, et al. Discovery of novel celastrol-triazole derivatives with Hsp90-Cdc37 disruption to induce tumor cell apoptosis[J]. Bioorg Chem, 2021, 111: 104867. doi: 10.1016/j.bioorg.2021.104867

    [20]

    Li N, Xu MY, Zhang LL, et al. Discovery of novel celastrol-imidazole derivatives with anticancer activity in vitro and in vivo[J]. J Med Chem, 2022, 65(6): 4578-4589. doi: 10.1021/acs.jmedchem.1c01293

    [21]

    Jiang F, Wang HJ, Bao QC, et al. Optimization and biological evaluation of celastrol derivatives as Hsp90-Cdc37 interaction disruptors with improved druglike properties[J]. Bioorg Med Chem, 2016, 24(21): 5431-5439. doi: 10.1016/j.bmc.2016.08.070

    [22]

    Hu XL, He QW, Long H, et al. Synthesis and biological evaluation of celastrol derivatives with improved cytotoxic selectivity and antitumor activities[J]. J Nat Prod, 2021, 84(7): 1954-1966. doi: 10.1021/acs.jnatprod.1c00262

    [23] Fei Y, Zhang YH, Huang ZJ. Advance in selective/targeted nitric oxide releasing strategies[J]. Prog Pharm Sci(药学进展), 2019, 43(11): 804-816.
    [24]

    Li N, Xu MY, Bao N, et al. Discovery of novel NO-releasing celastrol derivatives with Hsp90 inhibition and cytotoxic activities[J]. Eur J Med Chem, 2018, 160: 1-8. doi: 10.1016/j.ejmech.2018.10.013

    [25]

    Huang W, Zhang J, Luo L, et al. Nitric oxide and tumors: from small-molecule donor to combination therapy[J]. ACS Biomater Sci Eng, 2023, 9(1): 139-152. doi: 10.1021/acsbiomaterials.2c01247

    [26]

    Fu XF, Mao Q, Zhang B, et al. Thiazolidinedione-based structure modification of celastrol provides thiazolidinedione-conjugated derivatives as potent agents against non-small-cell lung cancer cells through a mitochondria-mediated apoptotic pathway[J]. J Nat Prod, 2022, 85(4): 1147-1156. doi: 10.1021/acs.jnatprod.2c00104

    [27]

    Huang LL, Zhang ZF, Zhang S, et al. Inhibitory action of celastrol on hypoxia-mediated angiogenesis and metastasis via the HIF-1α pathway[J]. Int J Mol Med, 2011, 27(3): 407-415.

    [28]

    Shang FF, Wang JY, Xu Q, et al. Design, synthesis of novel celastrol derivatives and study on their antitumor growth through HIF-1α pathway[J]. Eur J Med Chem, 2021, 220: 113474. doi: 10.1016/j.ejmech.2021.113474

    [29]

    Li XJ, Wang HM, Ding J, et al. Celastrol strongly inhibits proliferation, migration and cancer stem cell properties through suppression of Pin1 in ovarian cancer cells[J]. Eur J Pharmacol, 2019, 842: 146-156. doi: 10.1016/j.ejphar.2018.10.043

    [30]

    Li XJ, Ding J, Li N, et al. Synthesis and biological evaluation of celastrol derivatives as anti-ovarian cancer stem cell agents[J]. Eur J Med Chem, 2019, 179: 667-679. doi: 10.1016/j.ejmech.2019.06.086

    [31]

    Chen X, Zhao Y, Luo W, et al. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells[J]. Theranostics, 2020, 10(22): 10290-10308. doi: 10.7150/thno.46728

    [32]

    Lei ZC, Li N, Yu NR, et al. Design and synthesis of novel celastrol derivatives as potential anticancer agents against gastric cancer cells[J]. J Nat Prod, 2022, 85(5): 1282-1293. doi: 10.1021/acs.jnatprod.1c01236

    [33]

    Xu SW, Law BYK, Qu SLQ, et al. SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells[J]. Pharmacol Res, 2020, 153: 104660. doi: 10.1016/j.phrs.2020.104660

    [34]

    Coghi P, Ng JPL, Kadioglu O, et al. Synthesis, computational docking and biological evaluation of celastrol derivatives as dual inhibitors of SERCA and P-glycoprotein in cancer therapy[J]. Eur J Med Chem, 2021, 224: 113676. doi: 10.1016/j.ejmech.2021.113676

    [35]

    Xu H, Zhao HF, Ding CY, et al. Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1[J]. Signal Transduct Target Ther, 2023, 8(1): 51. doi: 10.1038/s41392-022-01231-4

    [36]

    Feng Y, Wang WB, Zhang Y, et al. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis[J]. Eur J Med Chem, 2022, 229: 114070. doi: 10.1016/j.ejmech.2021.114070

    [37]

    Figueiredo SAC, Salvador JAR, Cortés R, et al. Novel celastrol derivatives with improved selectivity and enhanced antitumour activity: design, synthesis and biological evaluation[J]. Eur J Med Chem, 2017, 138: 422-437. doi: 10.1016/j.ejmech.2017.06.029

    [38]

    Li N, Li CB, Zhang J, et al. Discovery of semisynthetic celastrol derivatives exhibiting potent anti-ovarian cancer stem cell activity and STAT3 inhibition[J]. Chem Biol Interact, 2022, 366: 110172. doi: 10.1016/j.cbi.2022.110172

    [39]

    Feng Y, Zhang B, Lv JL, et al. Scaffold hopping of celastrol provides derivatives containing pepper ring, pyrazine and oxazole substructures as potent autophagy inducers against breast cancer cell line MCF-7[J]. Eur J Med Chem, 2022, 234: 114254. doi: 10.1016/j.ejmech.2022.114254

  • 期刊类型引用(1)

    1. 周迎芳,韩琮定,任胜杰,文贵辉,文利新. 基于高脂饮食探究不同膳食油脂对小鼠附睾脂肪沉积的影响. 粮食与油脂. 2025(03): 55-59+66 . 百度学术

    其他类型引用(1)

图(18)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  28
  • PDF下载量:  19
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-04-17
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回
x 关闭 永久关闭