• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

雷公藤红素抗肿瘤类衍生物研究进展

张雪玲, 李娜, 陈莉

张雪玲,李娜,陈莉. 雷公藤红素抗肿瘤类衍生物研究进展[J]. 中国药科大学学报,2024,55(6):826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802
引用本文: 张雪玲,李娜,陈莉. 雷公藤红素抗肿瘤类衍生物研究进展[J]. 中国药科大学学报,2024,55(6):826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802
ZHANG Xueling, LI Na, CHEN Li. Progress of research on celastrol derivatives as anti-tumor agents[J]. J China Pharm Univ, 2024, 55(6): 826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802
Citation: ZHANG Xueling, LI Na, CHEN Li. Progress of research on celastrol derivatives as anti-tumor agents[J]. J China Pharm Univ, 2024, 55(6): 826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802

雷公藤红素抗肿瘤类衍生物研究进展

基金项目: 国家自然科学基金项目(No.82104027);江苏省自然科学基金项目(BK20221523)
详细信息
    通讯作者:

    陈莉: Tel:13814083082 E-mail:chenli627@cpu.edu.cn

  • 中图分类号: R914

Progress of research on celastrol derivatives as anti-tumor agents

Funds: This study was supported by the National Natural Science Foundation of China (No.82104027);and the Natural Science Foundation of Jiangsu Province (BK20221523)
  • 摘要:

    雷公藤红素是从中药雷公藤Tripterygium wilfordii Hook.f.根皮中分离得到的五环三萜类化合物,可抑制多种恶性肿瘤的生长,但也存在毒性大、水溶性差、靶向性欠佳等缺陷。因此,对其进行结构修饰是近年来的研究热点。已报道的雷公藤红素结构修饰主要集中在C-20-COOH及AB环的C-2、C-3、C-6位或多位点同时优化。本文主要依据不同的修饰位点、修饰目的(提高Hsp90-Cdc37 PPI抑制作用等)和修饰手段(基于骈和原理和特定靶点等),综述近年来雷公藤红素抗肿瘤类衍生物的研究进展。此外,还简要讨论了衍生物的抗肿瘤活性、作用机制和构效关系,以期能够为发现新的高效、低毒、选择性强的CEL衍生物提供理论指导。

    Abstract:

    Celastrol, a pentacyclic triterpenoid compound derived from the root of Chinese herb Tripterygium wilfordii Hook.f.,can inhibit the growth of various types of malignant tumors. However, it still has some limitations, including high toxicity, poor water solubility, and low targeting efficiency. Therefore, structural modification of celastrol has become a research hotspot in recent years. The structural modifications of celstrol reported have focused on C-20-COOH and C-2, C-3, C-6 or multiple sites of AB ring. This review provides an overview of the research progress of anti-tumor celastrol derivatives in recent years according to different structural modification sites and purposes, such as enhancing the inhibitory effect on the Hsp90-Cdc37 protein-protein interaction, and modification methods, including principles of parallelism and targeting specific sites. In addition, it briefly discusses the antitumor activity, mechanism of action, and structure-activity relationship of these derivatives, aiming to provide theoretical guidance for the discovery of new celastrol derivatives with high efficiency, low toxicity, and strong selectivity.

  • 肝功能障碍可能会改变血脑屏障(blood-brain barrier,BBB)上转运体表达和功能,导致脑内神经活性和毒性物质失衡,破坏中枢神经系统稳态[1]。有机阳离子转运体(organic cation transporters, OCTs)是一类介导多种内源性底物和外源性药物转运,对其在脑内吸收和分布起关键作用的转运载体,包括OCT1、OCT2和OCT3。OCT1/2主要位于脑微血管内皮细胞腔侧膜,介导内源性底物和外源性药物的脑内摄取,OCT2/3主要分布在胶质细胞和神经细胞,参与调节突触间隙单胺类神经递质、外源性药物和毒素的水平[2]。常见的OCTs底物如多巴胺、5-羟色胺、硫胺素和二甲双胍等[35]。OCTs表达和功能异常可能会对脑内能量代谢和药物处置产生影响[6]。研究发现,胆管结扎(bile duct ligation,BDL)差异性调节大鼠肠道、肝和肾等组织OCTs的表达与功能[7],从而影响作为OCTs底物的外源性或内源性物质的处置过程,但对脑上OCTs表达与功能的影响尚不清楚。临床研究发现,OCT1在人类肝的表达受遗传因素和胆汁淤积的影响[8]。胆道闭锁和非酒精性脂肪肝致胆汁淤积患者血清鹅去氧胆酸(chenodeoxycholic acid,CDCA)的含量显著高于健康人群[910]。动物实验显示,BDL手术7 d后,小鼠血清中CDCA、TUDCA和TCDCA的浓度均显著升高[11]。此外,BDL也会诱导大鼠血清中CDCA浓度的升高[12]。这些研究表明,胆汁淤积会影响人和啮齿类动物血清中CDCA的水平。CDCA是法尼醇X受体(farnesoid X receptor,FXR)的强效配体激动剂,可通过激活FXR调控OCTs功能和表达[7]

    本研究采用BDL大鼠模型,探究肝损伤状态下BBB上OCT1/2功能和表达变化。进一步建立灌胃CDCA大鼠模型,探究BDL诱发大鼠BBB上OCT1/2蛋白功能和表达改变是否与血液中CDCA的升高有关。

    天冬氨酸氨基转移酶(aspartate aminotransferase, AST)、丙氨酸氨基转移酶(alanine aminotransferase, ALT)、碱性磷酸酶(alkaline phosphatase, ALP)、总胆红素、直接胆红素、血氨和总胆汁酸等试剂盒(南京建成生物工程研究所);脱氧胆酸(deoxycholic acid, DC)、金刚烷胺(上海阿达玛斯试剂有限公司);RIPA裂解液(强)、SDS-PAGE蛋白上样缓冲液(上海碧云天生物技术研究所);BCA蛋白浓度测定试剂盒(上海翌圣生物科技有限公司);30%丙烯酰胺-甲叉双丙烯酰胺(南京生兴生物技术有限公司);OCT1抗体、OCT2抗体(英国Abcam公司);Occludin抗体、Claudin-5抗体(美国Santa Cruz Biotechnology公司);β-actin抗体、HRP山羊抗兔IgG、HRP山羊抗鼠IgG(美国Cell Signaling Technology公司);鹅去氧胆酸(中国麦克林生物公司);甘胆酸(glycocholic acid, GCA,中国美仑生物技术公司);苯甲基磺酰氟(phenylmethylsulfonyl fluoride,PMSF)、猪去氧胆酸(hyodeoxycholic acid, HDCA)、石胆酸(lithocholic acid, LCA)、胆酸(cholic acid, CA,中国阿拉丁试剂有限公司);甲醇、乙腈为色谱纯,其他试剂均为市售分析纯。

    Versa Max酶标仪(美国Molecular Devices公司);电泳装置(美国Bio-Rad公司);湿转装置(中国韦克斯公司);Tanon-5200 Multi全自动化学发光凝胶成像分析系统(中国天能科技公司);十万分之一精密天平(德国Sartorius公司);LC-MS 2020液质联用系统(日本岛津公司)。

    SPF级雄性SD大鼠,体重200~220 g,由上海必凯科翼生物科技有限公司提供,生产许可证号:SCXK(沪)2023-0009。所有动物实验均符合动物伦理委员会标准。

    SD大鼠适应性饲养5 d后,随机分为假手术组(Sham)和BDL手术组。将大鼠固定,在剑突下剪开一小口,于右侧肝脏下方寻得十二指肠,充分暴露连接肝脏和十二指肠的胆管并进行结扎。腹腔滴入250 mg/mL氨苄青霉素溶液少量,缝合。Sham组大鼠平行操作,但不对其胆管进行结扎。待大鼠清醒后,放回笼内饲养14 d。

    胆管结扎手术14 d后,对大鼠进行称重。随后处死大鼠,摘取肝、脾和肾,称重并计算各脏器系数。脏器系数 = 脏器质量(g)/体重(100 g)。采集新鲜血液,一部分置于离心管中,静置30 min后以4000r/min离心10 min,上层液即为血清;另一部分置于含有适量肝素钠的离心管中,静置30 min后以4000r/min离心10 min,上层液即为血浆。冰上分取大鼠大脑皮层并储存于−80 ℃冰箱中,用于后续实验。按照试剂盒说明书进行操作,测定血清中AST、ALT、ALP、总胆红素、直接胆红素、氨和总胆汁酸的含量。

    大鼠胆管结扎手术14 d后,禁食不禁水12 h,经尾静脉单剂量注射金刚烷胺(0.5 mg/kg),30 min后处死。采集新鲜血液,按“2.1”项下操作得大鼠血浆。冰上分取大鼠大脑皮层并储存于−80 ℃冰箱中,用于后续实验。

    精密称取金刚烷胺0.010 g,加入甲醇,溶解并定容至10 mL,得质量浓度为1 mg/mL的金刚烷胺储备液。储备液用甲醇逐步稀释为0.0195~2.5 μg/mL的金刚烷胺工作液。分别取各工作液20 μL,氮气挥干后加入空白脑匀浆液或空白血浆200 μL,按照下述样品处理方法平行操作。精密称取大鼠皮层组织100 mg,加入生理盐水200 μL,得脑匀浆液。取脑匀浆液或血浆200 μL,加入盐酸(1 mol/L)10 μL和水饱和正丁醇1 mL,剧烈振荡10 min,4 ℃下12000 r/min离心10 min。取适量体积上清液,氮气挥干,加入茶碱(20 μg/mL)10 μL作为内标,加入25%乙腈-水溶液90 μL复溶,剧烈振荡10 min,4 ℃下15500 r/min离心10 min,取上清液用于LC-MS分析。

    色谱条件:YMC-Triart C18色谱柱(5 μm,150 mm×2.0 mm);流动相:0.1%甲酸水溶液(A相)和乙腈(B相);等度洗脱:A:B(75︰25);柱温:40 ℃;进样体积:5 μL;流速:0.2 mL/min。质谱条件:DL管温度:250 ℃;加热模块温度:300 ℃;雾化器流速度:1.5 L/min;干燥气流速度:15 L/min;金刚烷胺检测离子[M+H]质荷比为m/z 152.25;茶碱检测离子[M+H]质荷比为m/z 181.1。按照内标法进行结果分析。

    根据先前文献报道的方法建立CDCA大鼠模型[13]。SD大鼠适应性饲养5 d后,随机分为对照组(control, CON)和CDCA造模组。CDCA组大鼠按照180 mg/(kg·d)的剂量灌胃给予CDCA混悬液(分散于0.5% CMC-Na中,现用现磨),连续给药14 d。对照组平行操作,灌胃等体积的0.5% CMC-Na。

    14 d给药结束后,对大鼠进行称重。随后处死大鼠,摘取肝、脾和肾,称重并计算各脏器系数。采集新鲜血液,按照“2.1”项下操作得大鼠血清和血浆。冰上分取大鼠大脑皮层并储存于–80℃冰箱中,用于后续实验。

    分别精密称取CDCA、DCA、HDCA、CA、GCA和LCA 0.010 g,加入甲醇溶解并定容至10 mL,得1 mg/mL的6种胆酸储备液。各储备液用甲醇逐步稀释为0.39~50 μg/mL CDCA、0.195~100 μg/mL DCA、0.39~50 μg/mL HDCA、0.39~100 μg/mL CA、0.156~10 μg/mL GCA和0.125~8 μg/mL LCA。6种胆酸工作液各取10 μL,氮气挥干后加入生理盐水100 μL,按照下述样品处理方法平行操作。6种胆酸标准曲线范围分别为0.039~5 μg/mL CDCA、0.0195~10 μg/mL DCA、0.039~5 μg/mL HDCA、0.039~10 μg/mL CA、0.0156~1 μg/mL GCA和0.0125~0.8 μg/mL LCA。取血浆100 μL,加入氯唑沙宗溶液(10 μg/mL)10 μL作为内标,加入盐酸(1 mol/L)10 μL和乙酸乙酯1 mL,剧烈振荡10 min,常温下,12000 r/min离心10 min。取适量体积的上清液,氮气挥干,加入40%乙腈-水溶液100 μL复溶,剧烈振荡10 min,常温下,15500 r/min离心10 min,取上清液用于LC-MS分析。

    色谱条件:YMC-Triart C18色谱柱(5 μm,150 mm×2.0 mm);流动相:0.1%甲酸-0.5%氨水溶液(A相),乙腈(B相);梯度洗脱程序:0~10 min,35%B,11~16 min,80%B,17~20 min,35%B;柱温:40 ℃;进样体积:5 μL;流速:0.2 mL/min。质谱条件:DL管温度:250 ℃;加热模块温度:300 ℃;雾化器流速度:1.5 L/min;干燥气流速度:15 L/min;各胆酸检测离子[M–H]-质荷比:CDCA m/z 391.25、DCA m/z 391.25、HDCA m/z 391.25、CA m/z 407.20、GCA m/z 464.20、LCA m/z 375.25、氯唑沙宗m/z 167.9。按照内标法进行结果分析。

    精密称取50 mg大鼠皮层组织,加入预冷的含1 mmol/L PMSF的RIPA裂解液1 mL匀浆,于4 ℃,15 500 r/min离心10 min,上清液即为蛋白溶液样品。按照BCA试剂盒说明书测定样品蛋白浓度。样品加入5×SDS上样缓冲液,100 ℃金属浴中煮10 min。分装后冷冻至 −80 ℃冰箱中保存备用。配制SDS-PAGE胶,上样,80 V恒压电泳30 min后,调整为120 V恒压1.5 h至目的蛋白完全被分开。通过200 mA,1.5 h的湿转体系将蛋白转移至硝酸纤维素膜上,5%脱脂牛奶溶液封闭2 h。4 ℃过夜孵育β-actin(1︰8000)、OCT1(1︰1000)、OCT2(1︰3000)、Claudin-5(1︰1000)和Occludin(1︰1000)等一抗。次日室温孵育HRP标记的山羊抗鼠(1︰3000)和山羊抗兔(1︰3000)等二抗。孵育结束后,置于ECL发光液反应进行成像,用Image J软件进行分析。

    实验中所得数据均以平均值±标准差表示。两组间比较时采用Student’s t-test进行统计检验,当P<0.05时认为差异具有统计学意义。

    BDL手术14 d后,使用试剂盒测定大鼠血清中生理生化指标。表 1结果显示,与Sham组相比,BDL大鼠体重没有明显变化,但肝、脾和肾等脏器系数显著增加。指标测定结果显示,与Sham组相比,BDL大鼠血清AST、ALT、ALP、总胆红素、直接胆红素、氨和总胆汁酸水平显著升高,符合胆汁淤积型病变特征,表明BDL肝损伤大鼠模型建立成功。此外,使用LC-MS对BDL大鼠血浆中CDCA的浓度进行了测定。测定结果显示,与Sham组相比,BDL大鼠血浆中CDCA的浓度显著增加。

    Table  1.  Physiological and biochemical parameters in serum and chenodeoxycholic acid(CDCA) concentration in plasma of sham and BDL rats ($ \bar{x}\pm s,n=5 $)
    ParameterShamBDL
    Body weight (BW)/g223.80±8.73229.40±12.20
    Liver index /(% BW)2.70±0.106.32±0.73**
    Spleen index/(% BW)0.24±0.030.40±0.05**
    Kidney index/(% BW)0.72±0.050.85±0.05**
    AST/(IU/L)36.52±1.85112.73±37.12**
    ALT/(IU/L)16.65±2.3042.89±15.35**
    ALP/(IU/L)15.79±2.1532.30±6.70**
    Total bilirubin/(μmol/L)1.26±0.13160.28±23.73**
    Conjugated bilirubin/(μmol/L)0.56±0.02135.41±12.10**
    Ammonia/(μmol/L)181.95±23.24225.32±29.19*
    Total bile acids/(μmol/L)15.33±3.52195.25±42.78**
    CDCA/(μg/mL)1.06±1.044.83±1.86**
    BDL:Bile duct ligation; AST:Aspartate aminotransferase; ALT:Alanine aminotransferase; ALP:Alkaline phosphatase
    *P<0.05, **P<0.01 vs sham group
    下载: 导出CSV 
    | 显示表格

    金刚烷胺是OCT1、OCT2和OCT3的外源性底物,但与OCT3的亲和力较低[4]。因此,将金刚烷胺的脑血浓度比值作为主要评价OCT1和OCT2功能的工具药。结果如图1所示,与Sham组相比,尾静脉注射金刚烷胺30 min后,BDL大鼠血浆中金刚烷胺浓度升高,皮层浓度降低,KP显著降低。上述结果提示,BDL大鼠BBB上OCT1/2功能可能受损。

    Figure  1.  Effect of BDL on distributions of amantadine in rats at 30 min following tail vein administration of amantadine (0.5 mg/kg) ($ \bar{x}\pm s,n=6 $)
    A: Amantadine concentration in the plasma; B: Amantadine concentration in the brain; C: Ratio of brain to plasma of amantadine*P<0.05, **P<0.01 vs sham group

    为排除金刚烷胺在BDL大鼠脑内分布减少是由BBB完整性被破坏引起的,本实验考察了BDL大鼠BBB上两种紧密连接蛋白的表达水平。结果如图2-A,2-B所示,与Sham组相比,BDL大鼠皮层Claudin-5和Occludin的蛋白表达均没有显著变化。进一步测定BDL大鼠皮层OCT1/2蛋白表达,结果如图2-C,2-D所示,与Sham组相比,BDL大鼠皮层OCT1蛋白表达显著下调,OCT2蛋白表达无显著变化。上述实验结果说明,BDL大鼠金刚烷胺脑内分布的减少主要与OCT1蛋白表达下调有关,与BBB通透性和OCT2无明显关系。

    Figure  2.  Effect of BDL on protein levels of Claudin-5, Occludin, OCT1, and OCT2 in the cortex of rats ($ \bar{x}\pm s $)
    A: Expression of Claudin-5 in the cortex of sham and BDL rats (n=8); B: Expression of Occludin in the cortex of sham and BDL rats (n=8); C, D: Expression of organic cation transporter 1/2 (OCT1/2) in the cortex of sham and BDL rats (n=6)**P<0.01 vss sham group

    研究表明,CDCA通过激活FXR下调肝脏OCT1蛋白表达[7]。结合“3.1”项中BDL大鼠血浆CDCA浓度的测定结果,本研究认为,BDL大鼠皮层OCT1蛋白表达和功能下调可能与血浆中CDCA浓度升高有关。因此,通过连续14 d灌胃给予大鼠180 mg/(kg·d) CDCA建立高CDCA血症模型,单因素考察血液中高浓度的CDCA对大鼠皮层OCT1/2蛋白表达的影响。通过生理生化指标评估CDCA是否会直接损伤大鼠肝脏。测定结果如表2所示,CDCA对大鼠的肝、脾和肾等脏器系数以及血清中AST、ALT和ALP的浓度无明显影响。

    Table  2.  Physiological and biochemical parameters of CON and CDCA-treated (180 mg/(kg·d)) for 14 d rats ($ \bar{x}\pm s,n=6 $)
    Parameter Control CDCA
    Body weight/(BW)/ g 248.33±9.83 251.67±38.17
    Liver index/(% BW) 2.88±0.13 2.78±0.23
    Spleen index/(% BW) 0.24±0.03 0.24±0.09
    Kidney index/(% BW) 0.77±0.04 0.81±0.06
    AST/(IU/L) 42.56±3.86 45.75±9.79
    ALT/(IU/L) 26.81±2.74 35.58±11.29
    ALP /(IU/L) 21.93±3.56 18.17±5.47
    下载: 导出CSV 
    | 显示表格

    由于胆汁酸在体内可以互相转化,因此本实验测定了灌胃CDCA后大鼠血浆中6种胆汁酸的含量。结果如图3所示,灌胃CDCA后,大鼠血浆中CDCA质量浓度约为对照组的4倍,而DCA、HDCA、CA、GCA和LCA没有显著变化,表明CDCA大鼠模型建立成功。

    Figure  3.  Effect of ig administration of CDCA (180 mg/(kg·d)) for 14 d on concentrations of bile acids in plasma of rats ($ \bar{x}\pm s,n=6 $)
    DCA:Deoxycholic acid; HDCA: Hyodeoxycholic acid; CA: Cholic acid; GCA: Glycocholic acid; LCA: Lithocholic acid;CON:Control**P<0.01 vs CON group

    进一步考察灌胃CDCA对大鼠BBB上OCT1/2蛋白表达的影响。结果如图4-A, 4-B所示,灌胃CDCA后,大鼠皮层OCT1蛋白表达显著下调,而OCT2蛋白表达无明显变化。由此可以证明,BDL诱导的肝损伤下调BBB上OCT1蛋白表达与功能主要由血浆中高浓度的CDCA引起。

    Figure  4.  Effect of ig administration of CDCA (180 mg/(kg·d)) for 14 d on the expression of OCT1 and OCT2 in the cortex of rats ($ \bar{x}\pm s,n=8 $)
    **P<0.01 vs CON group

    胆汁淤积型肝损伤大鼠模型是常用的肝性脑病动物模型,用于了解疾病的病理特征、发生机制和药物靶标,广泛应用于药物有效性、毒性和药代动力学研究。OCTs在中枢神经系统发病机制和药物递送中发挥重要作用。

    本研究使用BDL大鼠模型,探究肝损伤大鼠BBB上OCT1/2功能与表达变化。BDL手术14 d后,大鼠肝脏系数和肝功能指标均显著升高,提示出现胆汁淤积型肝损伤。OCTs外源性底物金刚烷胺KP显著降低,表明BDL大鼠BBB上OCT1/2功能可能受损。中枢神经系统疾病的发生与BBB被破坏有关[14]。紧密连接蛋白是上皮细胞和内皮细胞间维持物理屏障功能的结构,常用来评估BBB完整性[15]。Western blot结果显示,BDL对大鼠皮层紧密连接蛋白Claudin-5和Occludin的表达没有明显影响,与前期的研究结果一致[1]。与Sham组相比,BDL大鼠皮层OCT1蛋白表达下调了约71%,OCT2蛋白表达无明显变化。上述结果提示BDL大鼠脑内金刚烷胺分布减少的主要原因可能是OCT1表达减少。CDCA可通过激活肝脏FXR下调OCT1蛋白表达[7]。由此可以推测,BDL大鼠BBB上OCT1蛋白表达和功能损伤可能与血液中CDCA水平改变有关。因此,本研究测定了BDL大鼠血浆CDCA的浓度。结果显示,BDL大鼠血浆CDCA浓度均值为(4.83±1.86)μg/mL,约为Sham大鼠浓度均值(1.06±1.04)μg/mL的4倍。进一步通过连续14 d灌胃给予大鼠180 mg/(kg·d) CDCA建立高CDCA血症大鼠模型,单因素考察血液中高浓度的CDCA对大鼠皮层OCT1/2蛋白表达的影响。生理生化指标结果显示,连续14 d灌胃CDCA对大鼠肝功能没有明显损伤。胆汁酸测定结果显示,灌胃CDCA后,大鼠血浆CDCA质量浓度均值为(32.04±14.59) μg/mL,约为对照大鼠浓度均值(1.35±1.67)μg/mL的20倍,而DCA、HDCA、CA、GCA和LCA等均没有显著变化,表明模型建立成功。BDL大鼠血液中胆汁酸水平随结扎天数的延长处于动态变化的过程。研究数据显示,Sham组大鼠血清中CDCA浓度约为0.5 μmol/L,BDL组大鼠血清中CDCA在达到峰值时(约在结扎后的第3天)浓度约为6.6 μmol/L,在结扎后第14 天的浓度约为2.3 μmol/L [12]。由此可以看出,胆管结扎后,大鼠血清中CDCA的浓度在高峰期约为Sham组大鼠的13倍,随着结扎天数的延长,血清中CDCA的浓度约稳定至Sham组大鼠的5倍。这些结果表明,大鼠在胆管结扎后的14 d内血液中CDCA浓度持续处于较高的水平,且在术后的1周内最为明显。尽管测定结果显示BDL术后第14 天大鼠血浆中CDCA浓度略低于连续14 d灌胃CDCA后大鼠血浆中CDCA的浓度,但结合胆汁淤积状态下CDCA的动态变化过程,研究认为灌胃CDCA大鼠和BDL大鼠血浆中CDCA的浓度变化量处于一个数量级内。Western blot结果显示,与对照组相比,灌胃CDCA后大鼠皮层OCT1蛋白表达下调了约51%,OCT2蛋白表达无明显变化。BDL诱导的肝损伤常伴随血液中总胆汁酸、总胆红素和氨水平的升高,尽管本研究认为CDCA是下调BDL大鼠BBB上OCT1蛋白表达和功能的主要因素,但不能排除其他异常改变成分对BBB上OCT1的影响。研究发现,在炔雌醇诱导的胆汁淤积型大鼠肾脏中,OCT1蛋白表达无明显变化,而OCT2蛋白表达显著下调[16]。本实验室在前期研究中也发现了这一现象,CDCA能够浓度依赖下调大鼠原代肝细胞上OCT1蛋白表达,上调OCT2蛋白表达。沉默大鼠原代肝细胞上FXR能够逆转CDCA对OCT1和OCT2蛋白表达的影响[7]。这些研究表明,尽管CDCA-FXR是OCT1和OCT2的共同上游通路,但激活FXR对OCT1和OCT2的调控具有机制差异性和组织差异性。综上所述,本研究认为BDL大鼠BBB上OCT1功能和蛋白表达下调可能与外周血中CDCA的升高有关,而FXR通路激活可能是调控OCT1的机制之一。此外,BDL大鼠BBB上OCT1改变是否会参与肝性脑病介导的中枢神经系统紊乱也值得进一步探究。

    随着OCTs在脑内的定位越来越清晰,其参与脑内内源性物质和药物转运与清除的作用也逐渐被重视。本研究发现BDL诱导的肝损伤大鼠BBB上OCT1功能与表达下调,当肝功能障碍患者需要服用某些作为OCT1底物的药物时,该药物的疗效可能不佳,如抗癫痫类药物拉莫三嗪[17]。疾病状态下,OCTs表达和功能失常可能会增加底物药物的血浆暴露量,降低中枢神经系统药物的疗效,如抗阿尔茨海默病药物多奈哌齐[18]。西咪替丁是临床上常用的抗胃酸分泌药物,但具有中枢神经系统毒性,阻断脑OCT1可能会降低西咪替丁引起的头痛、幻觉等不良反应[19]。研究肝损伤状态下BBB上OCTs的改变,有助于了解疾病的发生机制,为临床合理用药提供参考,降低患者的用药风险。

  • 图  1   CEL-阿魏酸衍生物1~32的结构

    图  4   CEL-咪唑衍生物108~135的结构

    图  2   CEL-肉桂酸衍生物33~80的结构

    图  3   CEL-三氮唑衍生物81~107的结构

    图  5   CEL酯类和酰胺类衍生物136~158的结构

    图  6   CEL酯类衍生物159~173的结构

    图  7   CEL-NO供体衍生物174~184的结构

    图  8   CEL-噻唑烷二酮衍生物185~204的结构

    图  9   CEL C-20衍生物205~228的结构

    图  10   CEL-肉桂酰胺衍生物229~245的结构

    图  11   CEL-吡唑衍生物246~269的结构

    图  12   CEL-多肽衍生物270~280的结构

    图  13   CEL靶向Prdx1衍生物281~282的结构

    图  14   CEL C-20和C-3修饰衍生物283~313的结构

    图  15   CEL C-20衍生物329~343和C-3和C-20衍生物314~328的结构

    图  16   CEL多位点修饰衍生物344~364的结构

    图  17   CEL多位点修饰衍生物365~378的结构

    图  18   CEL多位点修饰衍生物379~405的结构

  • [1] Xu XM, Kang D, Zhu XY, et al. Effect of celastrol based on IRAK4/ERK/p38 signaling pathway on proliferation and apoptosis of multiple myeloma cells[J]. J Exp Hematol (中国实验血液学杂志), 2022, 30(1): 175-182.
    [2]

    Zhong YL, Xu GJ, Huang S, et al. Celastrol induce apoptosis of human multiple myeloma cells involving inhibition of proteasome activity[J]. Eur J Pharmacol, 2019, 853: 184-192. doi: 10.1016/j.ejphar.2019.03.036

    [3] Zhang XL, Li AP, Huan F, et al. Effects of celastrol on the proliferation and apoptosis of human leukemia cells HL-60 and Jurkat[J]. J China Pharm Univ (中国药科大学学报), 2015, 46(1): 89-93.
    [4]

    Wang X, Liu Q, Wu SS, et al. Identifying the effect of celastrol against ovarian cancer with network pharmacology and in vitro experiments[J]. Front Pharmacol, 2022, 13: 739478. doi: 10.3389/fphar.2022.739478

    [5]

    Arisan ED, Rencuzogullari O, Coban M, et al. The role of the PI3K/AKT/mTOR signaling axis in the decision of the celastrol-induced cell death mechanism related to the lipid regulatory pathway in prostate cancer cells[J]. Phytochem Lett, 2020, 39: 73-83. doi: 10.1016/j.phytol.2020.06.007

    [6]

    Tan QL, Liu ZQ, Gao XB, et al. Celastrol recruits UBE3A to recognize and degrade the DNA binding domain of steroid receptors[J]. Oncogene, 2022, 41(42): 4754-4767. doi: 10.1038/s41388-022-02467-8

    [7]

    Zhan DM, Ni TY, Wang HB, et al. Celastrol inhibits the proliferation and decreases drug resistance of cisplatin- resistant gastric cancer SGC7901/DDP cells[J]. Anticancer Agents Med Chem, 2022, 22(2): 270-279. doi: 10.2174/1871520621666210528144006

    [8]

    Chen GE, Zhu XY, Li JQ, et al. Celastrol inhibits lung cancer growth by triggering histone acetylation and acting synergically with HDAC inhibitors[J]. Pharmacol Res, 2022, 185: 106487. doi: 10.1016/j.phrs.2022.106487

    [9]

    Zhang WX, Wu ZM, Qi HJ, et al. Celastrol upregulated ATG7 triggers autophagy via targeting Nur77 in colorectal cancer[J]. Phytomedicine, 2022, 104: 154280. doi: 10.1016/j.phymed.2022.154280

    [10]

    Dai CH, Zhu LR, Wang Y, et al. Celastrol acts synergistically with afatinib to suppress non-small cell lung cancer cell proliferation by inducing paraptosis[J]. J Cell Physiol, 2021, 236(6): 4538-4554. doi: 10.1002/jcp.30172

    [11]

    Liu M, Fan YM, Li DY, et al. Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis[J]. Mol Oncol, 2021, 15(8): 2084-2105. doi: 10.1002/1878-0261.12936

    [12]

    Zhao ZC, Wang YM, Gong YY, et al. Celastrol elicits antitumor effects by inhibiting the STAT3 pathway through ROS accumulation in non-small cell lung cancer[J]. J Transl Med, 2022, 20(1): 525. doi: 10.1186/s12967-022-03741-9

    [13]

    Lim HY, Ong PS, Wang LZ, et al. Celastrol in cancer therapy: recent developments, challenges and prospects[J]. Cancer Lett, 2021, 521: 252-267. doi: 10.1016/j.canlet.2021.08.030

    [14]

    Lu Y, Liu Y, Zhou JW, et al. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol[J]. Med Res Rev, 2021, 41(2): 1022-1060. doi: 10.1002/med.21751

    [15]

    Sreeramulu S, Gande SL, Göbel M, et al. Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol[J]. Angew Chem Int Ed, 2009, 48(32): 5853-5855. doi: 10.1002/anie.200900929

    [16]

    Zhang T, Hamza A, Cao XH, et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells[J]. Mol Cancer Ther, 2008, 7(1): 162-170. doi: 10.1158/1535-7163.MCT-07-0484

    [17]

    Xu MY, Li N, Zhao ZH, et al. Design, synthesis and antitumor evaluation of novel celastrol derivatives[J]. Eur J Med Chem, 2019, 174: 265-276. doi: 10.1016/j.ejmech.2019.04.050

    [18]

    Li N, Xu MY, Wang B, et al. Discovery of novel celastrol derivatives as Hsp90-Cdc37 interaction disruptors with antitumor activity[J]. J Med Chem, 2019, 62(23): 10798-10815. doi: 10.1021/acs.jmedchem.9b01290

    [19]

    Li N, Chen C, Zhu HT, et al. Discovery of novel celastrol-triazole derivatives with Hsp90-Cdc37 disruption to induce tumor cell apoptosis[J]. Bioorg Chem, 2021, 111: 104867. doi: 10.1016/j.bioorg.2021.104867

    [20]

    Li N, Xu MY, Zhang LL, et al. Discovery of novel celastrol-imidazole derivatives with anticancer activity in vitro and in vivo[J]. J Med Chem, 2022, 65(6): 4578-4589. doi: 10.1021/acs.jmedchem.1c01293

    [21]

    Jiang F, Wang HJ, Bao QC, et al. Optimization and biological evaluation of celastrol derivatives as Hsp90-Cdc37 interaction disruptors with improved druglike properties[J]. Bioorg Med Chem, 2016, 24(21): 5431-5439. doi: 10.1016/j.bmc.2016.08.070

    [22]

    Hu XL, He QW, Long H, et al. Synthesis and biological evaluation of celastrol derivatives with improved cytotoxic selectivity and antitumor activities[J]. J Nat Prod, 2021, 84(7): 1954-1966. doi: 10.1021/acs.jnatprod.1c00262

    [23] Fei Y, Zhang YH, Huang ZJ. Advance in selective/targeted nitric oxide releasing strategies[J]. Prog Pharm Sci(药学进展), 2019, 43(11): 804-816.
    [24]

    Li N, Xu MY, Bao N, et al. Discovery of novel NO-releasing celastrol derivatives with Hsp90 inhibition and cytotoxic activities[J]. Eur J Med Chem, 2018, 160: 1-8. doi: 10.1016/j.ejmech.2018.10.013

    [25]

    Huang W, Zhang J, Luo L, et al. Nitric oxide and tumors: from small-molecule donor to combination therapy[J]. ACS Biomater Sci Eng, 2023, 9(1): 139-152. doi: 10.1021/acsbiomaterials.2c01247

    [26]

    Fu XF, Mao Q, Zhang B, et al. Thiazolidinedione-based structure modification of celastrol provides thiazolidinedione-conjugated derivatives as potent agents against non-small-cell lung cancer cells through a mitochondria-mediated apoptotic pathway[J]. J Nat Prod, 2022, 85(4): 1147-1156. doi: 10.1021/acs.jnatprod.2c00104

    [27]

    Huang LL, Zhang ZF, Zhang S, et al. Inhibitory action of celastrol on hypoxia-mediated angiogenesis and metastasis via the HIF-1α pathway[J]. Int J Mol Med, 2011, 27(3): 407-415.

    [28]

    Shang FF, Wang JY, Xu Q, et al. Design, synthesis of novel celastrol derivatives and study on their antitumor growth through HIF-1α pathway[J]. Eur J Med Chem, 2021, 220: 113474. doi: 10.1016/j.ejmech.2021.113474

    [29]

    Li XJ, Wang HM, Ding J, et al. Celastrol strongly inhibits proliferation, migration and cancer stem cell properties through suppression of Pin1 in ovarian cancer cells[J]. Eur J Pharmacol, 2019, 842: 146-156. doi: 10.1016/j.ejphar.2018.10.043

    [30]

    Li XJ, Ding J, Li N, et al. Synthesis and biological evaluation of celastrol derivatives as anti-ovarian cancer stem cell agents[J]. Eur J Med Chem, 2019, 179: 667-679. doi: 10.1016/j.ejmech.2019.06.086

    [31]

    Chen X, Zhao Y, Luo W, et al. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells[J]. Theranostics, 2020, 10(22): 10290-10308. doi: 10.7150/thno.46728

    [32]

    Lei ZC, Li N, Yu NR, et al. Design and synthesis of novel celastrol derivatives as potential anticancer agents against gastric cancer cells[J]. J Nat Prod, 2022, 85(5): 1282-1293. doi: 10.1021/acs.jnatprod.1c01236

    [33]

    Xu SW, Law BYK, Qu SLQ, et al. SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells[J]. Pharmacol Res, 2020, 153: 104660. doi: 10.1016/j.phrs.2020.104660

    [34]

    Coghi P, Ng JPL, Kadioglu O, et al. Synthesis, computational docking and biological evaluation of celastrol derivatives as dual inhibitors of SERCA and P-glycoprotein in cancer therapy[J]. Eur J Med Chem, 2021, 224: 113676. doi: 10.1016/j.ejmech.2021.113676

    [35]

    Xu H, Zhao HF, Ding CY, et al. Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1[J]. Signal Transduct Target Ther, 2023, 8(1): 51. doi: 10.1038/s41392-022-01231-4

    [36]

    Feng Y, Wang WB, Zhang Y, et al. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis[J]. Eur J Med Chem, 2022, 229: 114070. doi: 10.1016/j.ejmech.2021.114070

    [37]

    Figueiredo SAC, Salvador JAR, Cortés R, et al. Novel celastrol derivatives with improved selectivity and enhanced antitumour activity: design, synthesis and biological evaluation[J]. Eur J Med Chem, 2017, 138: 422-437. doi: 10.1016/j.ejmech.2017.06.029

    [38]

    Li N, Li CB, Zhang J, et al. Discovery of semisynthetic celastrol derivatives exhibiting potent anti-ovarian cancer stem cell activity and STAT3 inhibition[J]. Chem Biol Interact, 2022, 366: 110172. doi: 10.1016/j.cbi.2022.110172

    [39]

    Feng Y, Zhang B, Lv JL, et al. Scaffold hopping of celastrol provides derivatives containing pepper ring, pyrazine and oxazole substructures as potent autophagy inducers against breast cancer cell line MCF-7[J]. Eur J Med Chem, 2022, 234: 114254. doi: 10.1016/j.ejmech.2022.114254

图(18)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  29
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回
x 关闭 永久关闭