• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

外源性乳酸对高脂饲料诱导肥胖小鼠的代谢调节作用

张楠, 黄孝学, 张子良, 罗玉, 林君谦, 王涛

张楠, 黄孝学, 张子良, 罗玉, 林君谦, 王涛. 外源性乳酸对高脂饲料诱导肥胖小鼠的代谢调节作用[J]. 中国药科大学学报, 2023, 54(5): 614-625. DOI: 10.11665/j.issn.1000-5048.2023050501
引用本文: 张楠, 黄孝学, 张子良, 罗玉, 林君谦, 王涛. 外源性乳酸对高脂饲料诱导肥胖小鼠的代谢调节作用[J]. 中国药科大学学报, 2023, 54(5): 614-625. DOI: 10.11665/j.issn.1000-5048.2023050501
ZHANG Nan, HUANG Xiaoxue, ZHANG Ziliang, LUO Yu, LIN Junqian, WANG Tao. Metabolic regulation of exogenous lactate on obese mice induced by high fat diet[J]. Journal of China Pharmaceutical University, 2023, 54(5): 614-625. DOI: 10.11665/j.issn.1000-5048.2023050501
Citation: ZHANG Nan, HUANG Xiaoxue, ZHANG Ziliang, LUO Yu, LIN Junqian, WANG Tao. Metabolic regulation of exogenous lactate on obese mice induced by high fat diet[J]. Journal of China Pharmaceutical University, 2023, 54(5): 614-625. DOI: 10.11665/j.issn.1000-5048.2023050501

外源性乳酸对高脂饲料诱导肥胖小鼠的代谢调节作用

基金项目: 国家自然科学基金资助项目(No.81403154)

Metabolic regulation of exogenous lactate on obese mice induced by high fat diet

Funds: This study was supported by the National Natural Science Foundation of China (No.81403154)
  • 摘要: 探讨外源性乳酸对高脂喂养诱导肥胖小鼠的代谢调节作用。采用脂肪含量60%的全合成高脂饲料建立C57小鼠代谢紊乱及肥胖模型,一部分小鼠采取高脂饲料喂养4周造模,于造模同时腹腔注射给予500 mg/(kg·d) 乳酸预防性干预4周;另一部分小鼠采取高脂饲料喂养8周造模,于造模4周后给予500 mg/(kg·d) 乳酸治疗4周。试验期间测定各组小鼠体重、摄食量变化,检测血清葡萄糖、乳酸、甘油三酯、胰岛素及肝糖原水平,通过口服糖耐量(OGTT)和胰岛素耐量(ITT)检测机体葡萄糖代谢和胰岛素抵抗情况,实验结束解剖取脂肪组织称重并进行脂肪组织病理学检查,通过RT-PCR检测脂肪组织的脂质合成和脂质分解基因表达情况。结果显示:(1)4周预防给药试验中,乳酸对正常(CON)和高脂饮食(HFD)小鼠体重未见明显影响,却可提高皮下脂肪与内脏脂肪的质量比;乳酸给药可明显降低HFD小鼠空腹血糖和肝糖原,同时升高血乳酸水平,对HFD小鼠糖耐量受损具有显著改善;乳酸可改善HFD组脂肪细胞的大小和排列形态,同时明显下调脂肪组织中脂肪酸合成和脂解基因表达。(2)在治疗8周实验中,乳酸两种给药途径均能部分减轻HFD组小鼠和减少摄食量,对于脂肪质量有部分改善趋势;乳酸两种给药途径均可明显降低HFD小鼠空腹血糖,显著改善糖耐量和胰岛素耐量,对空腹胰岛素水平及胰岛素抵抗指数也有部分改善作用;乳酸两种给药途径对肥胖小鼠脂肪细胞形态有不同程度的改善作用,同时显著下调脂肪组织中脂解基因表达。由此可见,对于高脂饲料诱导的肥胖性代谢失衡小鼠,给予外源性乳酸可以刺激糖代谢,抑制脂肪组织脂解,避免脂肪细胞肥大,进而改善糖耐量和胰岛素敏感性,减轻糖脂代谢紊乱。
    Abstract: This study investigates the metabolic regulatory effects of exogenous lactate on obesity mice induced by high-fat diet.We established obesity and metabolic disorder C57 mice model using a synthetic high-fat forage containing 60% fat.Some mice were fed with high-fat diet for 4 weeks to establish the model, being given 500 mg/(kg?d) lactate with ip for 4 weeks at the same time; the others were fed with high-fat diet for 8 weeks to establish the model, being given 500 mg/(kg?d) lactate 4 weeks after 4 weeks of modeling.During the trial period, the change of body weight and food intake, as well as serum glucose, lactate, triglycerides, insulin, and liver glycogen levels of both groups of mice were measured.Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were used to assess glucose metabolism and insulin resistance in the body.At the end of the experiment, adipose tissue was dissected for weighing and histopathological examination.The expression of lipid synthesis and lipolysis genes in adipose tissue was detected by real-time PCR.The results showed that: (1) in the 4-week preventive medication trial, lactate had no significant effect on the body weight of normal and high-fat diet (HFD) mice, yet it increased the subcutaneous fat/visceral fat weight ratio; lactate could significantly reduce fasting blood glucose and liver glycogen levels in HFD mice while increasing blood lactate levels, significantly improving impaired glucose tolerance in HFD mice; lactate could improve the size and arrangement of adipocytes in the HFD group while significantly down-regulating the expression of fatty acid synthesis and lipolysis genes in adipose tissue; (2) in the 8-week treatment, both routes of lactate administration could partially reduce body weight in HFD group mice and reduce food intake, with the improvement trend for fat weight; both routes of lactate administration could significantly reduce fasting blood glucose levels in HFD mice, while significantly improving glucose and insulin tolerance, with some improvement of fasting insulin levels and insulin resistance index; both routes of lactate administration showed different degrees of improvement effect on adipocyte morphology in obese mice while significantly down-regulating lipolysis gene expression in adipose tissue.Therefore, for high-fat diet-induced obese mice with metabolic imbalance, exogenous lactate can stimulate glucose metabolism, inhibit adipose tissue lipolysis, and prevent adipocyte hypertrophy, thereby improving glucose tolerance and insulin sensitivity and reducing sugar-lipid metabolic disorder.
  • [1] Goodpaster BH, Sparks LM. Metabolic flexibility in health and disease[J]. Cell Metab, 2017, 25(5): 1027-1036.
    [2] Derosa G, Maffioli P. Anti-obesity drugs: a review about their effects and their safety[J]. Expert Opin Drug Saf, 2012, 11(3): 459-471.
    [3] Deng MJ, Qu F, Chen L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol, 2020, 245(3): 425-437.
    [4] Chen JY, Qian DL, Wang ZS, et al. Threonine supplementation prevents the development of fat deposition in mice fed a high-fat diet[J]. Food Funct, 2022, 13(14): 7772-7780.
    [5] Rhim HC, Kim MS, Park YJ, et al. The potential role of arginine supplements on erectile dysfunction: a systemic review and meta-analysis[J]. J Sex Med, 2019, 16(2): 223-234.
    [6] Yang KL, Zeng LT, Bao TT, et al. Effectiveness of Omega-3 fatty acid for polycystic ovary syndrome: a systematic review and meta-analysis[J]. Reprod Biol Endocrinol, 2018, 16(1): 27.
    [7] Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate[J]. Nature, 2017, 551(7678): 115-118.
    [8] Brooks GA. The science and translation of lactate shuttle theory[J]. Cell Metab, 2018, 27(4): 757-785.
    [9] Rabinowitz JD, Enerb?ck S. Lactate: the ugly duckling of energy metabolism[J]. Nat Metab, 2020, 2(7): 566-571.
    [10] Hu JY, Cai M, Liu YR, et al. The roles of GRP81 as a metabolic sensor and inflammatory mediator[J]. J Cell Physiol, 2020, 235(12): 8938-8950.
    [11] Hoque R, Farooq A, Ghani A, et al. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity[J]. Gastroenterology, 2014, 146(7): 1763-1774.
    [12] Liu CL, Wu JJ, Zhu J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81[J]. J Biol Chem, 2009, 284(5): 2811-2822.
    [13] Cai TQ, Ren N, Jin L, et al. Role of GPR81 in lactate-mediated reduction of adipose lipolysis[J]. Biochem Biophys Res Commun, 2008, 377(3): 987-991.
    [14] Boughanem H, Yubero-Serrano EM, López-Miranda J, et al. Potential role of insulin growth-factor-binding protein 2 as therapeutic target for obesity-related insulin resistance[J]. Int J Mol Sci, 2021, 22(3): 1133.
    [15] Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese[J]. Biomed Pharmacother, 2021, 137: 111315.
    [16] Nagarajan SR, Cross E, Sanna F, et al. Dysregulation of hepatic metabolism with obesity: factors influencing glucose and lipid metabolism[J]. Proc Nutr Soc, 2022, 81(1): 1-11.
    [17] Lin YJ, Bai MJ, Wang S, et al. Lactate is a key mediator that links obesity to insulin resistance via modulating cytokine production from adipose tissue[J]. Diabetes, 2022, 71(4): 637-652.
    [18] Li XL, Yang YY, Zhang B, et al. Lactate metabolism in human health and disease[J]. Signal Transduct Target Ther, 2022, 7(1): 305.
    [19] Tsukamoto S, Shibasaki A, Naka A, et al. Lactate promotes myoblast differentiation and myotube hypertrophy via a pathway involving MyoD in vitro and enhances muscle regeneration in vivo[J]. Int J Mol Sci, 2018, 19(11): 3649.
    [20] Lee DK, Nguyen T, Lynch KR, et al. Discovery and mapping of ten novel G protein-coupled receptor genes[J]. Gene, 2001, 275(1): 83-91.
    [21] Ahmed K, Tunaru S, Tang C, et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81[J]. Cell Metab, 2010, 11(4): 311-319.
    [22] Sakurai T, Davenport R, Stafford S, et al. Identification of a novel GPR81-selective agonist that suppresses lipolysis in mice without cutaneous flushing[J]. Eur J Pharmacol, 2014, 727: 1-7.
    [23] Heydemann A. An overview of murine high fat diet as a model for type 2 diabetes mellitus[J]. J Diabetes Res, 2016, 2016: 2902351.
  • 期刊类型引用(4)

    1. 邱月,阮景欣,张向荣,刘颖,李欣南. 国内兽药新剂型及生产技术应用现状. 中国饲料. 2022(23): 24-31 . 百度学术
    2. 施沁青,王菁华,程曼曼,尹莉芳,秦超. 盐酸伊伐布雷定单层渗透泵控释片的制备与体外释药行为. 中国药科大学学报. 2021(03): 311-317 . 本站查看
    3. 邹青,全海燕,李平. 单硝酸异山梨酯择时微孔渗透泵片的制备及含量测定. 中国医药科学. 2020(13): 52-54+72 . 百度学术
    4. 杨继荣,陈伟,朱颖. 包衣参数对推拉式渗透泵片半透膜包衣层透明度的影响. 中国医药工业杂志. 2020(12): 1564-1569 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  187
  • HTML全文浏览量:  11
  • PDF下载量:  262
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-10-16
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭