• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于质谱的N-糖蛋白分析进展

田志新

田志新. 基于质谱的N-糖蛋白分析进展[J]. 中国药科大学学报, 2023, 54(6): 662-673. DOI: 10.11665/j.issn.1000-5048.2023062701
引用本文: 田志新. 基于质谱的N-糖蛋白分析进展[J]. 中国药科大学学报, 2023, 54(6): 662-673. DOI: 10.11665/j.issn.1000-5048.2023062701
TIAN Zhixin. Progresses of mass spectrometry-based analysis of N-glycoproteins[J]. Journal of China Pharmaceutical University, 2023, 54(6): 662-673. DOI: 10.11665/j.issn.1000-5048.2023062701
Citation: TIAN Zhixin. Progresses of mass spectrometry-based analysis of N-glycoproteins[J]. Journal of China Pharmaceutical University, 2023, 54(6): 662-673. DOI: 10.11665/j.issn.1000-5048.2023062701

基于质谱的N-糖蛋白分析进展

基金项目: 国家自然科学基金资助项目(No.22074105,No.21775110,No.21575104)

Progresses of mass spectrometry-based analysis of N-glycoproteins

Funds: This study was supported by the National Natural Science Foundation of China (No.22074105, No.21775110, No.21575104)
  • 摘要: N-连接糖基化是蛋白质上常见的翻译后修饰,在修饰位点上具有跟其他小分子修饰(如甲基化、乙酰化、磷酸化)同样的宏观不均一性,也就是蛋白质氨基酸序列上具有多个潜在的修饰位点。但相对于小分子修饰单一的结构,N-糖基化修饰具有来自不同单糖组成,序列结构、链接结构、异头异构,立体构象等多个结构维度的数以万计的结构。这使得N-糖基化在修饰位点上具有额外的微观不均一性,也就是说同一个N-糖基化位点可以以一定的化学计量比修饰不同的糖链。N-糖基化修饰以位点和结构特异的方式调控N-糖蛋白的结构和功能,疾病条件下差异表达的N-糖基化需通过位点和结构特异的定量分析来表征。本文主要介绍最新发展水平的基于质谱的位点和结构特异定量N-糖蛋白质组学及在生物医学中的应用。
    Abstract: N-linked glycosylation is a common post-translational modification on proteins, which exhibits the same macro-heterogeneity of modification site as other small molecule modifications (such as methylation, acetylation, phosphorylation), i.e., the amino acid sequence of a protein has multiple putative modification sites. However, compared to small molecule modifications with single structures, N-glycosylation modification have tens of thousands of structures from multiple structural dimensions such as different monosaccharide compositions, sequence structures, linking structures, isomerism, and three-dimensional conformation.This results in additional micro-heterogeneity of modification site of N-glycosylation, i.e., the same N-glycosylation site can be modified with different glycans with a certain stoichiometric ratio.N-glycosylation modification regulates the structure and function of N-glycoproteins in a site- and structure-specific manner, and differential expression of N-glycosylation under disease conditions needs to be characterized through site- and structure-specific quantitative analysis.This article mainly introduces the latest development of mass spectrometry-based site- and structure-specific quantitative N-glycoproteomics and its applications in biomedical fields.
  • [1] Shi XJ, Zhang DQ, Li F, et al. Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity[J]. J Hematol Oncol, 2019, 12(1): 127.
    [2] Wang YN, Lee HH, Hsu JL, et al. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis[J]. J Biomed Sci, 2020, 27(1): 77.
    [3] Sato Y, Nakata K, Kato Y, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein[J]. N Engl J Med, 1993, 328(25): 1802-1806.
    [4] Bournazos S, Vo HTM, Duong V, et al. Antibody fucosylation predicts disease severity in secondary dengue infection[J]. Science, 2021, 372(6546): 1102-1105.
    [5] Pickard JM, Maurice CF, Kinnebrew MA, et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness[J]. Nature, 2014, 514(7524): 638-641.
    [6] Coyne MJ, Reinap B, Lee MM, et al. Human symbionts use a host-like pathway for surface fucosylation[J]. Science, 2005, 307(5716): 1778-1781.
    [7] Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory acti-vity of immunoglobulin G resulting from Fc sialylation[J]. Science, 2006, 313(5787): 670-673.
    [8] Shade KT C, Conroy ME, Washburn N, et al. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity[J]. Nature, 2020, 582(7811): 265-270.
    [9] Yao YK, Kim G, Shafer S, et al. Mucus sialylation determines intestinal host-commensal homeostasis[J]. Cell, 2022, 185(7): 1172-1188.e28.
    [10] Xiao KJ, Han YY, Tian ZX. Large-scale identification and visualization of human liver N-glycome enriched from LO2 cells[J]. Anal Bioanal Chem, 2018, 410(17): 4195-4202.
    [11] Xiao KJ, Wang Y, Shen Y, et al. Large-scale identification and visualization of N-glycans with primary structures using GlySeeker[J]. Rapid Commun Mass Spectrom, 2018, 32(2): 142-148.
    [12] Mun DG, Bhin J, Kim S, et al. Proteogenomic characterization of human early-onset gastric cancer[J]. Cancer Cell, 2019, 35(1): 111-124.e10.
    [13] Shen Y, You YW, Xiao KJ, et al. Large-scale identification and fragmentation pathways analysis of N-glycans from mouse brain[J]. J Am Soc Mass Spectrom, 2019, 30(7): 1254-1261.
    [14] Xiao KJ, Han YY, Yang HL, et al. Mass spectrometry-based qualitative and quantitative N-glycomics: an update of 2017-2018[J]. Anal Chim Acta, 2019, 1091: 1-22.
    [15] Qin SS, Qin SD, Tian ZX. Progresses in mass spectrometry-based plant N-glycomics and N-glycoproteomics[J]. Int J Mass Spectrom, 2022, 481: 116917.
    [16] Lu HR, Xiao KJ, Tian ZX. Benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers: a case study of pancreatic cancer[J]. Glycoconj J, 2021, 38(2): 213-231.
    [17] Qin SS, Qin SD, Tian ZX. Comprehensive site- and structure-specific characterization of N-glycosylation in model plant Arabidopsis using mass-spectrometry-based N-glycoproteomics[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2022, 1198: 123234.
    [18] Qin SD, Tian ZX. Gain-of-glycosylation in breast multi-drug-resistant MCF-7 adenocarcinoma cells and cancer stem cells characterized by site- and structure-specific N-glycoproteomics[J]. Anal Chim Acta, 2023, 1252: 341029.
    [19] Gong YQ, Qin SD, Dai LZ, et al. The glycosylation in SARS-CoV-2 and its receptor ACE2[J]. Signal Transduct Target Ther, 2021, 6(1): 396.
    [20] Xiao KJ, Tian ZX. GPSeeker enables quantitative structural N-glycoproteomics for site- and structure-specific characterization of differentially expressed N-glycosylation in hepatocellular carcinoma[J]. J Proteome Res, 2019, 18(7): 2885-2895.
    [21] Yang HL, Xu FF, Xiao KJ, et al. N-glycoproteomics study of putative N-glycoprotein biomarkers of drug resistance in MCF-7/ADR cells[J]. Phenomics, 2021, 1(6): 269-284.
    [22] Wang Y, Tian ZX. New energy setup strategy for intact N-glycopeptides characterization using higher-energy collisional dissociation[J]. J Am Soc Mass Spectrom, 2020, 31(3): 651-657.
    [23] Yang HL, Xu FF, Chen Y, et al. Putative N-glycoprotein markers of MCF-7/ADR cancer stem cells from N-glycoproteomics characterization of the whole cell lysate[J]. Talanta, 2021, 232: 122437.
    [24] Wang Y, Xu FF, Chen Y, et al. A quantitative N-glycoproteomics study of cell-surface N-glycoprotein markers of MCF-7/ADR cancer stem cells[J]. Anal Bioanal Chem, 2020, 412(11): 2423-2432.
    [25] Wang Y, Xiao KJ, Tian ZX. Quantitative N-glycoproteomics using stable isotopic diethyl labeling[J]. Talanta, 2020, 219: 121359.
    [26] Yang HL, Tian ZX. Sialic acid linkage-specific quantitative N-glycoproteomics using selective alkylamidation and multiplex TMT-labeling[J]. Anal Chim Acta, 2022, 1230: 340391.
    [27] Wang Y, Xu FF, Xiao KJ, et al. Site- and structure-specific characterization of N-glycoprotein markers of MCF-7 cancer stem cells using isotopic-labelling quantitative N-glycoproteomics[J]. Chem Commun, 2019, 55(55): 7934-7937.
    [28] Shen Y, Xiao KJ, Tian ZX. Site- and structure-specific characterization of the human urinary N-glycoproteome with site-determining and structure-diagnostic product ions[J]. Rapid Commun Mass Spectrom, 2021, 35(1): e8952.
    [29] Xue BB, Xiao KJ, Wang Y, et al. Site- and structure-specific quantitative N-glycoproteomics study of differential N-glycosylation in MCF-7 cancer cells[J]. J Proteomics, 2020, 212: 103594.
    [30] Xiao KJ, Tian ZX. Site- and structure-specific quantitative N-glycoproteomics using RPLC-pentaHILIC separation and the intact N-glycopeptide search engine GPSeeker[J]. Curr Protoc Protein Sci, 2019, 97(1): e94.
    [31] Yang HL, Xu FF, Chen Y, et al. Structural N-glycoproteomics characterization of cell-surface N-glycosylation of MCF-7/ADR cancer stem cells[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2023, 1219: 123647.
    [32] Bi M, Bai B, Tian ZX. Structure-specific N-glycoproteomics characterization of NIST monoclonal antibody reference material 8671[J]. J Proteome Res, 2022, 21(5): 1276-1284.
    [33] Yang JY, Wang W, Chen ZM, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity[J]. Nature, 2020, 586(7830): 572-577.
    [34] Li SS, Zhou Y, Xiao KJ, et al. Selective fragmentation of the N-glycan moiety and protein backbone of ribonuclease B on an Orbitrap Fusion Lumos Tribrid mass spectrometer[J]. Rapid Commun Mass Spectrom, 2018, 32(23): 2031-2039.
    [35] de Haan N, Pu?i?-Bakovi? M, Novokmet M, et al. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples[J]. Glycobiology, 2022, 32(8): 651-663.
    [36] Donohoo KB, Wang JY, Goli M, et al. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021[J]. Electrophoresis, 2022, 43(1/2): 119-142.
    [37] Luo YT, Wang BC, Yi LH, et al. Mesoporous materials for glycopeptide separation [J]. Trends Anal Chem, 22023, 167: 117234.
    [38] Reiding KR, Bondt A, Franc V, et al. The benefits of hybrid fragmentation methods for glycoproteomics[J]. Trac Trends Anal Chem, 2018, 108: 260-268.
    [39] DelaField DG, Li LJ. Recent advances in analytical approaches for glycan and glycopeptide quantitation[J]. Mol Cell Proteomics, 2021, 20: 100054.
    [40] Polasky DA and Nesvizhskii AI. Recent advances in computational algorithms and software for large-scale glycoproteomics [J]. Curr Opin Chem Biol,2023,72:102238.doi:10.1016/j.cbpa. 2022. 102238.
    [41] Oliveira T, Thaysen-Andersen M, Packer NH, et al. The hitchhiker’s guide to glycoproteomics[J]. Biochem Soc Trans, 2021, 49(4): 1643-1662.
    [42] Bagdonaite I, Malaker SA, Polasky DA, et al. Glycoproteomics[J]. Nat Rev Method Prime, 2022, 2(1): 1-29.
    [43] Chau TH, Chernykh A, Kawahara R, et al. Critical considerations in N-glycoproteomics[J]. Curr Opin Chem Biol, 2023, 73: 102272.
    [44] Li L, Tian ZX. Interpreting raw biological mass spectra using isotopic mass-to-charge ratio and envelope fingerprinting[J]. Rapid Commun Mass Spectrom, 2013, 27(11): 1267-1277.
    [45] Xiao KJ, Yu F, Fang HQ, et al. Accurate and efficient resolution of overlapping isotopic envelopes in protein tandem mass spectra[J]. Sci Rep, 2015, 5: 14755.
    [46] Xiao KJ, Yu F, Tian ZX. Top-down protein identification using isotopic envelope fingerprinting[J]. J Proteomics, 2017, 152: 41-47.
    [47] Xiao KJ, Shen Y, Li SS, et al. Accurate phosphorylation site localization using phospho-brackets[J]. Anal Chim Acta, 2017, 996: 38-47.
    [48] Du YY, Wang Y, Lai ZZ, et al. Study on the differences in N-glycosylation of disease-specific immune and inflammatory proteins between lung cancer and lung benign disease[J]. Basic Clin Med (基础医学与临床), 2020, 40(8): 1096-1102.
  • 期刊类型引用(3)

    1. 丁艳,刘培培,闻武,陈捷,杭太俊. 环境中毒品检测技术研究进展与展望. 中国法医学杂志. 2024(01): 14-22 . 百度学术
    2. 覃昆飞,黄丽珍,何建忠. LC-MRM~3法测定中草药和药酒中3种强心作用的生物碱. 职业与健康. 2024(17): 2337-2345 . 百度学术
    3. 张小军,符慧慧. LC-MS/MS法对血栓通注射液中皂苷成分快速定量分析. 婚育与健康. 2024(22): 79-81 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  590
  • HTML全文浏览量:  17
  • PDF下载量:  308
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-06-26
  • 修回日期:  2023-12-10
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭