高级检索

基于质谱的N-糖蛋白分析进展

Progresses of mass spectrometry-based analysis of N-glycoproteins

  • 摘要: N-连接糖基化是蛋白质上常见的翻译后修饰,在修饰位点上具有跟其他小分子修饰(如甲基化、乙酰化、磷酸化)同样的宏观不均一性,也就是蛋白质氨基酸序列上具有多个潜在的修饰位点。但相对于小分子修饰单一的结构,N-糖基化修饰具有来自不同单糖组成,序列结构、链接结构、异头异构,立体构象等多个结构维度的数以万计的结构。这使得N-糖基化在修饰位点上具有额外的微观不均一性,也就是说同一个N-糖基化位点可以以一定的化学计量比修饰不同的糖链。N-糖基化修饰以位点和结构特异的方式调控N-糖蛋白的结构和功能,疾病条件下差异表达的N-糖基化需通过位点和结构特异的定量分析来表征。本文主要介绍最新发展水平的基于质谱的位点和结构特异定量N-糖蛋白质组学及在生物医学中的应用。

     

    Abstract: N-linked glycosylation is a common post-translational modification on proteins, which exhibits the same macro-heterogeneity of modification site as other small molecule modifications (such as methylation, acetylation, phosphorylation), i.e., the amino acid sequence of a protein has multiple putative modification sites. However, compared to small molecule modifications with single structures, N-glycosylation modification have tens of thousands of structures from multiple structural dimensions such as different monosaccharide compositions, sequence structures, linking structures, isomerism, and three-dimensional conformation.This results in additional micro-heterogeneity of modification site of N-glycosylation, i.e., the same N-glycosylation site can be modified with different glycans with a certain stoichiometric ratio.N-glycosylation modification regulates the structure and function of N-glycoproteins in a site- and structure-specific manner, and differential expression of N-glycosylation under disease conditions needs to be characterized through site- and structure-specific quantitative analysis.This article mainly introduces the latest development of mass spectrometry-based site- and structure-specific quantitative N-glycoproteomics and its applications in biomedical fields.

     

/

返回文章
返回