[1] |
Ferreirós N, Dresen S, Alonso RM, et al.Validated quantitation of angiotensin II receptor antagonists (ARA-II) in human plasma by liquid-chromatography-tandem mass spectrometry using minimum sample clean-up and investigation of ion suppression[J]. Ther Drug Monit, 2007, 29(6): 824-834.
|
[2] |
Richards KH, Monk R, Renko K, et al. A combined LC-MS/MS and LC-MS3 multi-method for the quantification of iodothyronines in human blood serum[J]. Anal Bioanal Chem, 2019, 411(21): 5605-5616.
|
[3] |
Aydin E, Drotleff B, Noack H, et al. Fast accurate quantification of salivary cortisol and cortisone in a large-scale clinical stress study by micro-UHPLC-ESI-MS/MS using a surrogate calibrant approach[J].J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1182: 122939.
|
[4] |
Guironnet A, Wiest L, Vulliet E.Advantages of MS/MS/MS (MRM3) vs classic MRM quantification for complex environmental matrices: Analysis of beta-lactams in WWTP sludge[J]. Anal Chim Acta, 2022, 1205: 339773.
|
[5] |
Duan X, Lu D, Zheng X, et al. Development and validation of an LC-MS/MS assay with multiple stage fragmentation for the quantification of alachlor in McF-7 cells[J].J Chromatogr B Analyt Technol Biomed Life Sci, 2023, 1214: 123550.
|
[6] |
Berna M, Schmalz C, Duffin K, et al. Online immunoaffinity liquid chromatography/tandem mass spectrometry determination of a type II collagen peptide biomarker in rat urine: Investigation of the impact of collision-induced dissociation fluctuation on peptide quantitation[J]. Anal Biochem, 2006, 356(2): 235-243.
|
[7] |
Manjunath Swamy J, Kamath N, Radha Shekar AK, et al. Sensitivity enhancement and matrix effect evaluation during summation of multiple transition pairs-case studies of clopidogrel and ramiprilat[J]. Biomed Chromatogr, 2010, 24(5): 528-534.
|
[8] |
Campbell JL, Collings BA, Yves Le Blanc JC, et al. A novel MS3 experiment for quantifying ions with a linear ion trap[J]. Can J Chem, 2018, 96(7): 653-663.
|
[9] |
Mayya V, Rezaul K, Cong YS, et al. Systematic comparison of a two-dimensional ion trap and a three-dimensional ion trap mass spectrometer in proteomics[J]. Mol Cell Proteomics, 2005, 4(2): 214-223.
|
[10] |
Douglas DJ, Frank AJ, Mao D. Linear ion traps in mass spectrometry[J]. Mass Spectrom Rev, 2005, 24(1): 1-29.
|
[11] |
Botitsi HV, Garbis SD, Economou A, et al. Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices[J]. Mass Spectrom Rev, 2011, 30(5): 907-939.
|
[12] |
Hager JW. A new linear ion trap mass spectrometer[J]. Rapid Commun Mass Spectrom, 2002, 16(6): 512-526.
|
[13] |
Cha B, Blades M, Douglas DJ. An interface with a linear quadrupole ion guide for an electrospray-ion trap mass spectrometer system[J]. Anal Chem, 2000, 72(22): 5647-5654.
|
[14] |
Miyachi A, Murase T, Yamada Y, et al. Quantitative analytical method for determining the levels of gastric inhibitory polypeptides GIP1-42 and GIP3-42 in human plasma using LC-MS/MS/MS[J]. J Proteome Res, 2013, 12(6): 2690-2699.
|
[15] |
Quinete N, Bertram J, Reska M, et al. Highly selective and automated online SPE LC-MS3 method for determination of cortisol and cortisone in human hair as biomarker for stress related diseases[J]. Talanta, 2015, 134: 310-316.
|
[16] |
Hager JW, Yves Le Blanc JC. Product ion scanning using a Q-q-Q linear ion trap (Q TRAP) mass spectrometer[J]. Rapid Commun Mass Spectrom, 2003, 17(10): 1056-1064.
|
[17] |
Sandra K, Devreese B, Van Beeumen J, et al. The Q-Trap mass spectrometer, a novel tool in the study of protein glycosylation[J]. J Am Soc Mass Spectrom, 2004, 15(3): 413-423.
|
[18] |
Snyder DT, Peng WP, Cooks RG. Resonance methods in quadrupole ion traps[J]. Chem Phys Lett, 2017, 668: 69-89.
|
[19] |
Collings BA, Stott WR, Londry FA. Resonant excitation in a low-pressure linear ion trap[J]. J Am Soc Mass Spectrom, 2003, 14(6): 622-634.
|
[20] |
Li C. Research on high sensitivity quadrupole-inear ion trap tandem mass spectrometry(高灵敏度四极杆-线形离子阱串联质谱技术研究)[D]. Changchun: Jilin University, 2022.
|
[21] |
Sordet M, Berlioz-Barbier A, Buleté A, et al. Quantification of emerging micropollutants in an amphipod crustacean by nanoliquid chromatography coupled to mass spectrometry using multiple reaction monitoring cubed mode[J]. J Chromatogr A, 2016, 1456: 217-225.
|
[22] |
McCaffery P, Evans J, Koul O, et al. Retinoid quantification by HPLC/MSn[J]. J Lipid Res, 2002, 43(7): 1143-1149.
|
[23] |
Leuthold LA, Grivet C, Allen M, et al. Simultaneous selected reaction monitoring, MS/MS and MS3 quantitation for the analysis of pharmaceutical compounds in human plasma using chip-based infusion[J]. Rapid Commun Mass Spectrom, 2004, 18(17): 1995-2000.
|
[24] |
Ma W, Xu Y, Wang SY, et al. Research on accurate quantitation technique using liquid chromatography coupled with triple quadrupole mass spectrometry and experiment optimization—take a novel diuretic as an example[J]. J Chin Pharm Sci, 2022, 31(3): 184.
|
[25] |
Song Q, Li J, Huo H, et al. Retention time and optimal collision energy advance structural annotation relied on LC-MS/MS: an application in metabolite identification of an antidementia agent namely echinacoside[J]. Anal Chem, 2019, 91(23): 15040-15048.
|
[26] |
Liu W, Li W, Zhang P, et al. Quality structural annotation for the metabolites of chlorogenic acid in rat[J]. Food Chem, 2022, 379: 132134.
|
[27] |
Cao Y, Chai C, Chang A, et al. Optimal collision energy is an eligible molecular descriptor to boost structural annotation: an application for chlorogenic acid derivatives-focused chemical profiling[J]. J Chromatogr A, 2020, 1609: 460515.
|
[28] |
Cao Y, Li W, Chen W, et al. Squared energy-resolved mass spectrometry advances quantitative bile acid submetabolome characterization[J]. Anal Chem, 2022, 94(44): 15395-15404.
|
[29] |
Zeng W, Bateman KP.Quantitative LC-MS/MS.1.Impact of points across a peak on the accuracy and precision of peak area measurements[J]. J Am Soc Mass Spectrom, 2023, 34(6): 1136-1144.
|
[30] |
Sordet M, Buleté A, Vulliet E. A rapid and easy method based on hydrophilic interaction chromatography coupled with tandem mass spectrometry (HILIC-MS/MS/MS) to quantify iodinated X-ray contrast in wastewaters[J]. Talanta, 2018, 190: 480-486.
|
[31] |
Lopukhov LV, Balandina AV, Nigmatullina LS, et al. Evaluation of multiple reaction monitoring cubed performed by a quadrupole-linear ion trap mass spectrometer for quantitative determination of 6-sulfatoxymelatonin in urine[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2022, 1190: 123094.
|
[32] |
Vonk RJ, Vaast A, Eeltink S, et al. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography[J]. J Chromatogr A, 2014, 1359: 162-169.
|
[33] |
Muscat Galea C, Didion D, Clicq D, et al. Method optimization for drug impurity profiling in supercritical fluid chromatography: Application to a pharmaceutical mixture[J]. J Chromatogr A, 2017, 1526: 128-136.
|
[34] |
Korte R, Brockmeyer J. MRM3-based LC-MS multi-method for the detection and quantification of nut allergens[J]. Anal Bioanal Chem, 2016, 408(27): 7845-7855.
|
[35] |
Jaffuel A, Lemoine J, Aubert C, et al. Optimization of liquid chromatography-multiple reaction monitoring cubed mass spectrometry assay for protein quantification: application to aquaporin-2 water channel in human urine[J]. J Chromatogr A, 2013, 1301: 122-130.
|
[36] |
Guo JJ, Zhou W, Su WQ. Application strategy of mass spectrometry in protein biomarker discovery[J]. Chin J Mod Appl Pharm(中国现代应用药学), 2022, 39(23): 3183-3188.
|
[37] |
van Faassen M, van der Veen A, van Ockenburg S, et al. Mass spectrometric quantification of urinary 6-sulfatoxymelatonin: age-dependent excretion and biological variation[J]. Clin Chem Lab Med, 2020, 59(1): 187-195.
|
[38] |
Gaudl A, Kratzsch J, Bae YJ, et al. Liquid chromatography quadrupole linear ion trap mass spectrometry for quantitative steroid hormone analysis in plasma, urine, saliva and hair[J]. J Chromatogr A, 2016, 1464: 64-71.
|
[39] |
Jones JW, Pierzchalski K, Yu J, et al. Use of fast HPLC multiple reaction monitoring cubed for endogenous retinoic acid quantification in complex matrices[J]. Anal Chem, 2015, 87(6): 3222-3230.
|
[40] |
Szeitz A, Nguyen TA, Riggs KW, et al. A validated assay to quantitate serotonin in lamb plasma using ultrahigh-performance liquid chromatography-tandem mass spectrometry: applications with LC/MS3[J]. Anal Bioanal Chem, 2014, 406(20): 5055-5059.
|
[41] |
Wright MJ, Thomas RL, Stanford PE, et al. Multiple reaction monitoring with multistage fragmentation (MRM3) detection enhances selectivity for LC-MS/MS analysis of plasma free metanephrines[J]. Clin Chem, 2015, 61(3): 505-513.
|
[42] |
Kumar A, Gangadharan B, Zitzmann N. Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1033/1034: 278-286.
|
[43] |
Simon R, Lemoine J, Fonbonne C, et al. Absolute quantification of podocin, a potential biomarker of glomerular injury in human urine, by liquid chromatography-multiple reaction monitoring cubed mass spectrometry[J]. J Pharm Biomed Anal, 2014, 94: 84-91.
|
[44] |
Pailleux F, Beaudry F. Evaluation of multiple reaction monitoring cubed for the analysis of tachykinin related peptides in rat spinal cord using a hybrid triple quadrupole-linear ion trap mass spectrometer[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 947/948: 164-167.
|
[45] |
Vaclavik L, Krynitsky AJ, Rader JI. Quantification of aristolochic acids I and II in herbal dietary supplements by ultra-high-performance liquid chromatography-multistage fragmentation mass spectrometry[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2014, 31(5): 784-791.
|
[46] |
Ren T, Zhang Z, Fawcett JP, et al. Micro-solid phase extraction and LC-MS3 for the determination of triptorelin in rat plasma and application to a pharmacokinetic study[J]. J Pharm Biomed Anal, 2019, 166: 13-19.
|
[47] |
Cesari N, Fontana S, Montanari D, et al. Development and validation of a high-throughput method for the quantitative analysis of D-amphetamine in rat blood using liquid chromatography/MS3 on a hybrid triple quadrupole-linear ion trap mass spectrometer and its application to a pharmacokinetic study[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2010, 878(1): 21-28.
|
[48] |
Yin L, Ji Z, Cao H, et al. Comparison of LC-MS3 and LC-MRM strategy for quantification of methotrexate in human plasma and its application in therapeutic drug monitoring[J]. J Pharm Biomed Anal, 2021, 205: 114345.
|
[49] |
Ma D, Ji Z, Cao H, et al. LC-MS3 strategy for quantification of carbamazepine in human plasma and its application in therapeutic drug monitoring[J]. Molecules, 2022, 27(4): 1224.
|
[50] |
Sun Q, Cao H, Liu Y, et al. Comparison of LC-MS3 and LC-MRM methods for quantifying amantadine and its application in therapeutic amantadine monitoring in human plasma[J]. Molecules, 2022, 27(21): 7619.
|
[51] |
Dziadosz M, Klintschar M, Teske J. Imatinib quantification in human serum with LC-MS3 as an effective way of protein kinase inhibitor analysis in biological matrices[J]. Drug Metab Pers Ther, 2017, 32(3): 147-150.
|
[52] |
Dziadosz M. The application of multiple analyte adduct formation in the LC-MS3 analysis of valproic acid in human serum[J].J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1040: 159-161.
|
[53] |
Dziadosz M. γ-Hydroxybutyrate analysis in human serum with liquid chromatography-tandem mass spectrometry on the basis of MS3 mass transition[J].J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 986/987: 8-11.
|
[54] |
Shi X, Liu M, Sun M, et al.Development of a LC-ESI-MS3 method for determination of nitrendipine in human plasma[J]. J Pharm Biomed Anal, 2011, 56(5): 1101-1105.
|
[55] |
Stone NL, Murphy AJ, England TJ, et al. A systematic review of minor phytocannabinoids with promising neuroprotective potential[J]. Br J Pharmacol, 2020, 177(19): 4330-4352.
|
[56] |
Dulaurent S, Gaulier JM, Imbert L, et al. Simultaneous determination of Δ9-tetrahydrocannabinol, cannabidiol, cannabinol and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in hair using liquid chromatography-tandem mass spectrometry[J].Forensic Sci Int, 2014, 236: 151-156.
|
[57] |
Cho HS, Cho B, Sim J, et al. Detection of 11-nor-9-carboxy-tetrahydrocannabinol in the hair of drug abusers by LC-MS/MS analysis[J]. Forensic Sci Int, 2019, 295: 219-225.
|
[58] |
Park M, Kim J, Park Y, et al. Quantitative determination of 11-nor-9-carboxy-tetrahydrocannabinol in hair by column switching LC-ESI-MS(3)[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 947/948: 179-185.
|
[59] |
Thieme D, Sachs U, Sachs H, et al. Significant enhancement of 11-hydroxy-THC detection by formation of picolinic acid esters and application of liquid chromatography/multi stage mass spectrometry (LC-MS(3)): application to hair and oral fluid analysis[J]. Drug Test Anal, 2015, 7(7): 577-585.
|
[60] |
Thieme D, Sachs H, Uhl M. Proof of cannabis administration by sensitive detection of 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid in hair using selective methylation and application of liquid chromatography- tandem and multistage mass spectrometry[J]. Drug Test Anal, 2014, 6(1/2): 112-118.
|
[61] |
Hehet P, Franz T, Kunert N, et al. Fast and highly sensitive determination of tetrahydrocannabinol (THC) metabolites in hair using liquid chromatography-multistage mass spectrometry (LC-MS3)[J]. Drug Test Anal, 2022, 14(9): 1614-1622.
|
[62] |
Zubaidi FA, Choo YM, Tan GH, et al. A novel liquid chromatography tandem mass spectrometry technique using multi-period-multi-experiment of MRM-EPI-MRM3 with library matching for simultaneous determination of amphetamine type stimulants related drugs in whole blood, urine and dried blood stain (DBS)-application to forensic toxicology cases in Malaysia[J]. J Anal Toxicol, 2019, 43(7): 528-535.
|
[63] |
Jung HN, Park DH, Choi YJ, et al. Simultaneous quantification of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in animal and aquaculture products using liquid chromatography-tandem mass spectrometry[J].Front Nutr, 2022, 8: 812803.
|
[64] |
Faulkner DV, Cantley ML, Kennedy DG, et al.MRM3-based UHPLC-MS/MS method for quantitation of total florfenicol residue content in milk and withdrawal study profile of milk from treated cows[J]. Food Chem, 2022, 379: 132070.
|
[65] |
Sun L, Ye N, Wang YL, et al. Determination of β-agonists residues in complex animal derived food by LC-MS/MS/MS in high selectivity MRM3[J]. Chin J Vet Drug(中国兽药杂志), 2021, 55(7): 22-29.
|
[66] |
Ye L, Liu JC, Wang YL, et al.Development of a three-compartment toxicokinetic model for T-2 toxin in shrimp by blindfold particle swarm optimization algorithm[J]. Ecotoxicol Environ Saf, 2021, 208: 111698.
|
[67] |
Lim CW, Tai SH, Lee LM, et al. Analytical method for the accurate determination of tricothecenes in grains using LC-MS/MS: a comparison between MRM transition and MS3 quantitation[J].Anal Bioanal Chem, 2012, 403(10): 2801-2806.
|
[68] |
Chung SWC, Lam CH. Development of an analytical method for analyzing pyrrolizidine alkaloids in different groups of food by UPLC-MS/MS[J]. J Agric Food Chem, 2018, 66(11): 3009-3018.
|
[69] |
He JZ, Huang LZ. Determination of aconitine in medicated wine by LC-MS3[J]. Occup Health(职业与健康), 2021, 37(10): 1323-1326, 1332.
|
[70] |
Korte R, Monneuse JM, Gemrot E, et al. New high-performance liquid chromatography coupled mass spectrometry method for the detection of lobster and shrimp allergens in food samples via multiple reaction monitoring and multiple reaction monitoring cubed[J]. J Agric Food Chem, 2016, 64(31): 6219-6227.
|
[71] |
von Bargen C, Brockmeyer J, Humpf HU. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food[J]. J Agric Food Chem, 2014, 62(39): 9428-9435.
|
[72] |
von Bargen C, Dojahn J, Waidelich D, et al. New sensitive high-performance liquid chromatography-tandem mass spectrometry method for the detection of horse and pork in halal beef[J]. J Agric Food Chem, 2013, 61(49): 11986-11994.
|
[73] |
Hartung NM, Mainka M, Pfaff R, et al. Development of a quantitative proteomics approach for cyclooxygenases and lipoxygenases in parallel to quantitative oxylipin analysis allowing the comprehensive investigation of the arachidonic acid cascade[J].Anal Bioanal Chem, 2023, 415(5): 913-933.
|
[74] |
Musile G, Mazzola M, Shestakova K, et al. A simple and robust method for broad range screening of hair samples for drugs of abuse using a high-throughput UHPLC-Ion Trap MS instrument[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2020, 1152: 122263.
|
[75] |
Hoffner G, van der Rest G, Dansette PM, et al. The end product of transglutaminase crosslinking: simultaneous quantitation of [nepsilon-(gamma-glutamyl) lysine]and lysine by HPLC-MS3[J].Anal Biochem, 2009, 384(2): 296-304.
|
[76] |
Arioli F, Gamberini MC, Pavlovic R, et al. Quantification of cortisol and its metabolites in human urine by LC-MSn: applications in clinical diagnosis and anti-doping control[J]. Anal Bioanal Chem, 2022, 414(23): 6841-6853.
|
[77] |
Park J, Yu F, Fulcher JM, et al. Evaluating linear ion trap for MS3-based multiplexed single-cell proteomics[J]. Anal Chem, 2023, 95 (3): 1888-1898.
|