• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

生物质谱技术在腺相关病毒(AAV)载体制剂质量控制中的应用

李孟效, 李惠琳

李孟效, 李惠琳. 生物质谱技术在腺相关病毒(AAV)载体制剂质量控制中的应用[J]. 中国药科大学学报, 2023, 54(6): 682-694. DOI: 10.11665/j.issn.1000-5048.2023062901
引用本文: 李孟效, 李惠琳. 生物质谱技术在腺相关病毒(AAV)载体制剂质量控制中的应用[J]. 中国药科大学学报, 2023, 54(6): 682-694. DOI: 10.11665/j.issn.1000-5048.2023062901
LI Mengxiao, LI Huilin. Application of biological mass spectrometry in quality control of adeno-associated virus carrier preparations[J]. Journal of China Pharmaceutical University, 2023, 54(6): 682-694. DOI: 10.11665/j.issn.1000-5048.2023062901
Citation: LI Mengxiao, LI Huilin. Application of biological mass spectrometry in quality control of adeno-associated virus carrier preparations[J]. Journal of China Pharmaceutical University, 2023, 54(6): 682-694. DOI: 10.11665/j.issn.1000-5048.2023062901

生物质谱技术在腺相关病毒(AAV)载体制剂质量控制中的应用

基金项目: 国家自然科学基金资助项目(No.81872836,No.91953102);广东省自然科学基金资助项目(No.2019A1515011265)

Application of biological mass spectrometry in quality control of adeno-associated virus carrier preparations

Funds: This study was supported by the National Natural Science Foundation of China (No.81872836, No.91953102) and the National Natural Science Foundation of Guangdong Province (No.2019A1515011265)
  • 摘要: 腺相关病毒(adeno-associated virus,AAV)是一种基因治疗中常用的病毒载体。由于其安全性较高且能够靶向多种细胞,在临床前和临床研究中得到了较多的应用。不过在设计和生产的过程中,AAV载体有着诸多会影响其安全性和疗效的关键质量属性。生物质谱技术的发展和应用为生物大分子的研究提供了一个便捷的平台,尤其是在蛋白质序列、结构和相互作用方面。对于AAV载体而言,质谱技术可以实现衣壳蛋白比率、翻译后修饰、血清型、空衣壳比率的测定或表征,从而协助对AAV载体的质量控制。与现有方法相比,质谱技术具有样品需求量少、分析快速灵敏、适用于完整AAV载体的分析和质量分辨率高的优点,并且可以区分空衣壳、满衣壳和部分包封的衣壳。未来,通过将更加高效的蛋白质分离技术与质谱技术联用、开发新的信息处理软件平台和新的质谱检测方法,质谱技术有望在AAV载体的设计和生产中发挥更加重要的作用。
    Abstract: Adeno-associated virus (AAV) is a common viral vector used in gene therapy.Because of its high safety and its ability to target a variety of cells, it has been widely used in preclinical and clinical studies.However, during the design and production, AAV vectors have many key quality attributes that affect their safety and efficacy.The development and application of biological mass spectrometry technology provides a convenient platform for the research on biological macromolecules, especially in the aspects of protein sequence, structure and interaction.For AAV vectors, mass spectrometry can facilitate the determination or characterization of capsid protein ratio, post-translational modification, serotype, and empty capsid ratio, thus assisting in the quality control of AAV vectors.Compared with the existing methods, mass spectrometry has the advantages of smaller amount of sample size, faster and more sensitive analysis, being more suitable for the analysis of complete AAV vectors with higher mass resolution, and can distinguish empty capsids, full capsids and partial capsids.In the future, mass spectrometry technology is expected to play a more important role in the design and production of AAV vectors through the coupling of more efficient protein separation technology with mass spectrometry, the development of new information processing software platforms and new mass spectrometry detection techniques.
  • [1] Zhang AZ, Zhang JX, Zhang JF. Application and prospect of gene therapy for fundus vascular diseases[J]. Int Eye Sci (国际眼科杂志), 2023, 23(3): 400-406.
    [2] Li MQ, Wei LP, Tao QY, et al. Application status and research progress on safety of gene therapy delivery vectors[J]. Chin J Pharm (中国医药工业杂志), 2022, 53(12): 1671-1682.
    [3] Fu Q. , Polanco A. , Lee Y. S. , et al. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing[J/OL]. Biotechnology and Bioengineering, 2023[2023-06-16]. https://www. webofscience. com/wos/alldb/fullrecord/WOS:000978645100001.
    [4] Xu YY. Current status and challenges of gene therapy products[J]. China Biotechnol (中国生物工程杂志), 2020, 40(12): 95-103.
    [5] Zhu LF, Wang ZJ. Analysis of global gene therapy drug development status[J]. Prog Pharm Sci (药学进展), 2022, 46(5): 325-338.
    [6] Li YH, Li W. Advances in gene therapy for rare diseases[J]. J Rare Uncommon Dis (罕少疾病杂志), 2023, 30(3): 109-112.
    [7] Large EE, Silveria MA, Zane GM, et al. Adeno-associated virus (AAV) gene delivery: dissecting molecular interactions upon cell entry[J]. Viruses, 2021, 13(7): 1336.
    [8] Chen P, Zhang LJ, Li N. Progress in research on adeno-associated virus vectors[J]. Chin J Biol(中国生物制品学杂志), 2022, 35(4): 500-507.
    [9] Pipe S, Leebeek FWG, Ferreira V, et al. Clinical considerations for capsid choice in the development of liver-targeted AAV-based gene transfer[J]. Mol Ther Methods Clin Dev, 2019, 15: 170-178.
    [10] Mietzsch M, Jose A, Chipman P, et al. Completion of the AAV structural atlas: serotype capsid structures reveals clade-specific features[J]. Viruses, 2021, 13(1): 101.
    [11] Zhao LQ, Xi B, Peng HS. Advances on research of adeno-associated virus vectors[J]. Curr Biotechnol (生物技术进展), 2012, 2(2): 110-115.
    [12] Wu Y, Mei T, Jiang LY, et al. Development of versatile and flexible Sf9 packaging cell line-dependent OneBac system for large-scale recombinant adeno-associated virus production[J]. Hum Gene Ther Methods, 2019, 30(5): 172-183.
    [13] Maurer AC, Pacouret S, Cepeda Diaz AK, et al. The assembly-activating protein promotes stability and interactions between AAV’s viral proteins to nucleate capsid assembly[J]. Cell Rep, 2018, 23(6): 1817-1830.
    [14] Tse LV, Moller-Tank S, Meganck RM, et al. Mapping and engineering functional domains of the assembly-activating protein of adeno-associated viruses[J]. J Virol, 2018, 92(14): e00393-e00318.
    [15] Maurer AC, Cepeda Diaz AK, Vandenberghe LH. Residues on adeno-associated virus capsid lumen dictate interactions and compatibility with the assembly-activating protein[J]. J Virol, 2019, 93(7): e02013-e02018.
    [16] Ogden PJ, Kelsic ED, Sinai S, et al. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design[J]. Science, 2019, 366(6469): 1139-1143.
    [17] Galibert L, Hyv?nen A, Eriksson RAE, et al. Functional roles of the membrane-associated AAV protein MAAP[J]. Sci Rep, 2021, 11(1): 21698.
    [18] Huang XP, Wang X, Ren YX, et al. Reactive oxygen species enhance rAAV transduction by promoting its escape from late endosomes[J]. Virol J, 2023, 20(1): 2.
    [19] Hamilton BA, Wright JF. Challenges posed by immune responses to AAV vectors: addressing root causes[J]. Front Immunol, 2021, 12: 675897.
    [20] Urabe M, Ding CT, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors[J]. Hum Gene Ther, 2002, 13(16): 1935-1943.
    [21] Arriaga I, Navarro A, Etxabe A, et al. Cellular and structural characterization of VP1 and VP2 knockout mutants of AAV3B serotype and implications for AAV manufacturing[J]. Hum Gene Ther, 2022, 33(21/22): 1142-1156.
    [22] Bosma B, du Plessis F, Ehlert E, et al. Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system[J]. Gene Ther, 2018, 25(6): 415-424.
    [23] Salganik M, Venkatakrishnan B, Bennett A, et al. Evidence for pH-dependent protease activity in the adeno-associated virus capsid[J]. J Virol, 2012, 86(21): 11877-11885.
    [24] Grieger JC, Snowdy S, Samulski RJ. Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly[J]. J Virol, 2006, 80(11): 5199-5210.
    [25] Oyama H, Ishii K, Maruno T, et al. Characterization of adeno-associated virus capsid proteins with two types of VP3-related components by capillary gel electrophoresis and mass spectrometry[J]. Hum Gene Ther, 2021, 32(21/22): 1403-1416.
    [26] Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach[J]. Biotechnol Prog, 2012, 28(3): 608-622.
    [27] W?rner TP, Bennett A, Habka S, et al. Adeno-associated virus capsid assembly is divergent and stochastic[J]. Nat Commun, 2021, 12(1): 1642.
    [28] Giles AR, Sims JJ, Turner KB, et al. Deamidation of amino acids on the surface of adeno-associated virus capsids leads to charge heterogeneity and altered vector function[J]. Mol Ther, 2018, 26(12): 2848-2862.
    [29] Mary B, Maurya S, Arumugam S, et al. Post-translational modifications in capsid proteins of recombinant adeno-associated virus (AAV) 1-rh10 serotypes[J]. FEBS J, 2019, 286(24): 4964-4981.
    [30] Zhong L, Li BZ, Jayandharan G, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression[J]. Virology, 2008, 381(2): 194-202.
    [31] Weger S, Hammer E, Heilbronn R. SUMO-1 modification regulates the protein stability of the large regulatory protein Rep78 of adeno associated virus type 2 (AAV-2)[J]. Virology, 2004, 330(1): 284-294.
    [32] Gabriel N, Hareendran S, Sen D, et al. Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo[J]. Hum Gene Ther Methods, 2013, 24(2): 80-93.
    [33] Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors[J]. Curr Opin Virol, 2016, 21: 75-80.
    [34] Hu S, Yang LP. Expression pattern of different serotypes of adeno-associated viral vectors in mouse retina[J]. J Peking Univ Heath Sci (北京大学学报 医学版), 2020, 52(5): 845-850.
    [35] Yang F, Yang Y, Wang XL, et al. Comparison of the transfection effect of different AAV serotypes in rat DRG neurons[J]. Lab Anim Sci (实验动物科学), 2020, 37(6): 66-69.
    [36] Farraha M, Kizana E. Assessing recombinant AAV shedding after cardiac gene therapy[J]. Methods Mol Biol, 2022, 2573: 333-344.
    [37] Hakim CH, Kumar SRP, Pérez-López D, et al. Assessment of the gene therapy immune response in the canine muscular dystrophy model[J]. Methods Mol Biol, 2023, 2587: 353-375.
    [38] Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors[J]. Hum Gene Ther, 2010, 21(6): 704-712.
    [39] Kruzik A, Fetahagic D, Hartlieb B, et al. Prevalence of anti-adeno-associated virus immune responses in international cohorts of healthy donors[J]. Mol Ther Methods Clin Dev, 2019, 14: 126-133.
    [40] Heldt CL, Areo O, Joshi PU, et al. Empty and full AAV capsid charge and hydrophobicity differences measured with single-particle AFM[J]. Langmuir, 2023, 39(16): 5641-5648.
    [41] Wang CL, Mulagapati SHR, Chen ZY, et al. Developing an anion exchange chromatography assay for determining empty and full capsid contents in AAV6. 2[J]. Mol Ther Methods Clin Dev, 2019, 15: 257-263.
    [42] Serrano MAC, Furman R, Chen GD, et al. Mass spectrometry in gene therapy: challenges and opportunities for AAV analysis[J]. Drug Discov Today, 2023, 28(1): 103442.
    [43] Mingozzi F, Anguela XM, Pavani G, et al. Overcoming preexisting humoral immunity to AAV using capsid decoys[J]. Sci Transl Med, 2013, 5(194): 194ra92.
    [44] Gao K, Li MX, Zhong L, et al. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side-effects[J]. Mol Ther Methods Clin Dev, 2014, 1(9): 20139.
    [45] Jin XY, Liu L, Nass S, et al. Direct liquid chromatography/mass spectrometry analysis for complete characterization of recombinant adeno-associated virus capsid proteins[J]. Hum Gene Ther Methods, 2017, 28(5): 255-267.
    [46] Rogstad S, Faustino A, Ruth A, et al. A retrospective evaluation of the use of mass spectrometry in FDA biologics license applications[J]. J Am Soc Mass Spectrom, 2017, 28(5): 786-794.
    [47] Chen GD, Tao L, Li ZJ. Recent advancements in mass spectrometry for higher order structure characterization of protein therapeutics[J]. Drug Discov Today, 2022, 27(1): 196-206.
    [48] Liu XR, Huang RYC, Zhao FF, et al. Advances in mass spectrometry-based epitope mapping of protein therapeutics[J]. J Pharm Biomed Anal, 2022, 215: 114754.
    [49] Boeri Erba E, Signor L, Petosa C. Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry[J]. J Proteomics, 2020, 222: 103799.
    [50] Lee K, O''Reilly FJ. Cross-linking mass spectrometry for mapping protein complex topologies in situ[J]. Essays Biochem, 2023, 67(2): 215-228.
    [51] Pepelnjak M, de Souza N, Picotti P. Detecting protein-small molecule interactions using limited proteolysis-mass spectrometry (LiP-MS)[J]. Trends Biochem Sci, 2020, 45(10): 919-920.
    [52] Jurga, V, Kodicek M. Limited and pulse proteolysis of human hemoglobin[J]. Chemicke Listy, 2010, 104(4): 232-235.
    [53] Garcia NK, Sreedhara A, Deperalta G, et al. Optimizing hydroxyl radical footprinting analysis of biotherapeutics using internal standard dosimetry[J]. J Am Soc Mass Spectrom, 2020, 31(7): 1563-1571.
    [54] Espino JA, Jones LM. In vivo hydroxyl radical protein footprinting for the study of protein interactions in Caenorhabditis elegans[J]. J Vis Exp, 2020(158): 10. 3791/60910.
    [55] Tran MH, Schoeder CT, Schey KL, et al. Computational structure prediction for antibody-antigen complexes from hydrogen-deuterium exchange mass spectrometry: challenges and outlook[J]. Front Immunol, 2022, 13: 859964.
    [56] Piotrowski C, Sinz A. Structural investigation of proteins and protein complexes by chemical cross-linking/mass spectrometry[M]//Advances in Experimental Medicine and Biology. Singapore: Springer Singapore, 2018: 101-121.
    [57] Kurt LU, Clasen MA, Santos MDM, et al. Characterizing protein conformers by cross-linking mass spectrometry and pattern recognition[J]. Bioinformatics, 2021, 37(18): 3035-3037.
    [58] Prabhu N, Dai LY, Nordlund P. CETSA in integrated proteomics studies of cellular processes[J]. Curr Opin Chem Biol, 2020, 54: 54-62.
    [59] Su Q, Sena-Esteves M, Gao GP. Analysis of recombinant adeno-associated virus (rAAV) purity using silver-stained SDS-PAGE[J]. Cold Spring Harb Protoc, 2020, 2020(8): 095679.
    [60] Penaud-Budloo M, Broucque F, Harrouet K, et al. Stability of the adeno-associated virus 8 reference standard material[J]. Gene Ther, 2019, 26(5): 211-215.
    [61] Gurda BL, DiMattia MA, Miller EB, et al. Capsid antibodies to different adeno-associated virus serotypes bind common regions[J]. J Virol, 2013, 87(16): 9111-9124.
    [62] Savelyev A, Gorbet GE, Henrickson A, et al. Moving analytical ultracentrifugation software to a good manufacturing practices (GMP) environment[J]. PLoS Comput Biol, 2020, 16(6): e1007942.
    [63] Lechner A, Giorgetti J, Gahoual R, et al. Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016-2018[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1122/1123: 1-17.
    [64] Zhang CX, Meagher MM. Highly sensitive SDS capillary gel electrophoresis with sample stacking requiring only nanograms of adeno-associated virus capsid proteins[J]. Methods Mol Biol, 2019, 1972: 263-270.
    [65] Zhang XM, Jin XY, Liu L, et al. Optimized reversed-phase liquid chromatography/mass spectrometry methods for intact protein analysis and peptide mapping of adeno-associated virus proteins[J]. Hum Gene Ther, 2021, 32(23/24): 1501-1511.
    [66] Zhu QF, Zhang TY, Qin LL, et al. Method to calculate the retention index in hydrophilic interaction liquid chromatography using normal fatty acid derivatives as calibrants[J]. Anal Chem, 2019, 91(9): 6057-6063.
    [67] Wang F. Study on the retention mechanism in hydrophilic interaction chromatography using stoichiometric displacement theory(应用计量置换理论对亲水相互作用色谱中溶质保留机理的研究)[D]. Xi''an: Northwest University, 2015.
    [68] D''Atri V, Nováková L, Fekete S, et al. Orthogonal middle-up approaches for characterization of the glycan heterogeneity of etanercept by hydrophilic interaction chromatography coupled to high-resolution mass spectrometry[J]. Anal Chem, 2019, 91(1): 873-880.
    [69] Gargano AFG, Schouten O, van Schaick G, et al. Profiling of a high mannose-type N-glycosylated lipase using hydrophilic interaction chromatography-mass spectrometry[J]. Anal Chim Acta, 2020, 1109: 69-77.
    [70] Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: a review based on the separation characteristics of the hydrophilic interaction chromatography phases[J]. J Sep Sci, 2019, 42(1): 130-213.
    [71] Liu AP, Patel SK, Xing T, et al. Characterization of adeno-associated virus capsid proteins using hydrophilic interaction chromatography coupled with mass spectrometry[J]. J Pharm Biomed Anal, 2020, 189: 113481.
    [72] Allison TM, Bechara C. Structural mass spectrometry comes of age: new insight into protein structure, function and interactions[J]. Biochem Soc Trans, 2019, 47(1): 317-327.
    [73] Boeri Erba E, Signor L, Oliva MF, et al. Characterizing intact macromolecular complexes using native mass spectrometry[M]//Protein Complex Assembly. New York, NY: Springer New York, 2018: 133-151.
    [74] L?ssl P, Brunner AM, Liu F, et al. Deciphering the interplay among multisite phosphorylation, interaction dynamics, and conformational transitions in a tripartite protein system[J]. ACS Cent Sci, 2016, 2(7): 445-455.
    [75] Snijder J, van de Waterbeemd M, Damoc E, et al. Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by Orbitrap mass spectrometry[J]. J Am Chem Soc, 2014, 136(20): 7295-7299.
    [76] Zhang Y, Wang Y, Sosic Z, et al. Identification of adeno-associated virus capsid proteins using ZipChip CE/MS[J]. Anal Biochem, 2018, 555: 22-25.
    [77] Zhou Y, Wang YJ. Direct deamidation analysis of intact adeno-associated virus serotype 9 capsid proteins using reversed-phase liquid chromatography[J]. Anal Biochem, 2023, 668: 115099.
    [78] Bennett A, Patel S, Mietzsch M, et al. Thermal stability as a determinant of AAV serotype identity[J]. Mol Ther Methods Clin Dev, 2017, 6: 171-182.
    [79] Zarei M, Wang P, Jonveaux J, et al. A novel protocol for in-depth analysis of recombinant adeno-associated virus capsid proteins using UHPLC-MS/MS[J]. Rapid Commun Mass Spectrom, 2022, 36(6): e9247.
    [80] Murray S, Nilsson CL, Hare JT, et al. Characterization of the capsid protein glycosylation of adeno-associated virus type 2 by high-resolution mass spectrometry[J]. J Virol, 2006, 80(12): 6171-6176.
    [81] Lam AK, Zhang JP, Frabutt D, et al. Fast and high-throughput LC-MS characterization, and peptide mapping of engineered AAV capsids using LC-MS/MS[J]. Mol Ther Methods Clin Dev, 2022, 27: 185-194.
    [82] Wu ZJ, Wang HX, Tustian A, et al. Development of a two-dimensional liquid chromatography-mass spectrometry platform for simultaneous multi-attribute characterization of adeno-associated viruses[J]. Anal Chem, 2022, 94(7): 3219-3226.
    [83] Antoine R. Weighing synthetic polymers of ultra-high molar mass and polymeric nanomaterials: what can we learn from charge detection mass spectrometry[J]? Rapid Commun Mass Spectrom, 2020, 34(Suppl 2): e8539.
    [84] Barnes LF, Draper BE, Kurian J, et al. Analysis of AAV-extracted DNA by charge detection mass spectrometry reveals genome truncations[J]. Anal Chem, 2023, 95(9): 4310-4316.
    [85] Lee EJ, Guenther CM, Suh J. Adeno-associated virus (AAV) vectors: rational design strategies for capsid engineering[J]. Curr Opin Biomed Eng, 2018, 7: 58-63.
  • 期刊类型引用(3)

    1. 丁艳,刘培培,闻武,陈捷,杭太俊. 环境中毒品检测技术研究进展与展望. 中国法医学杂志. 2024(01): 14-22 . 百度学术
    2. 覃昆飞,黄丽珍,何建忠. LC-MRM~3法测定中草药和药酒中3种强心作用的生物碱. 职业与健康. 2024(17): 2337-2345 . 百度学术
    3. 张小军,符慧慧. LC-MS/MS法对血栓通注射液中皂苷成分快速定量分析. 婚育与健康. 2024(22): 79-81 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-12-05
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭