• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于质量编码探针的质谱多联检测研究进展

殷豪, 王伟, 闵乾昊

殷豪, 王伟, 闵乾昊. 基于质量编码探针的质谱多联检测研究进展[J]. 中国药科大学学报, 2023, 54(6): 706-717. DOI: 10.11665/j.issn.1000-5048.2023062902
引用本文: 殷豪, 王伟, 闵乾昊. 基于质量编码探针的质谱多联检测研究进展[J]. 中国药科大学学报, 2023, 54(6): 706-717. DOI: 10.11665/j.issn.1000-5048.2023062902
YIN Hao, WANG Wei, MIN Qianhao. Advances in mass-encoded probes for multiplex mass spectrometric detection[J]. Journal of China Pharmaceutical University, 2023, 54(6): 706-717. DOI: 10.11665/j.issn.1000-5048.2023062902
Citation: YIN Hao, WANG Wei, MIN Qianhao. Advances in mass-encoded probes for multiplex mass spectrometric detection[J]. Journal of China Pharmaceutical University, 2023, 54(6): 706-717. DOI: 10.11665/j.issn.1000-5048.2023062902

基于质量编码探针的质谱多联检测研究进展

基金项目: 国家自然科学基金资助项目(No.21974062,No.92053102)

Advances in mass-encoded probes for multiplex mass spectrometric detection

Funds: This study was supported by the National Natural Science Foundation of China (No.21974062, No.92053102)
  • 摘要: 质量编码探针是一类以质量标签分子对待测物进行特异性识别标记并输出其特征离子信号的探针工具,其在疾病标志物多元分析和药物靶点筛选等方面都发挥着重要的作用。近年来,研究者基于各类质谱分析方法,开发了不同结构与功能的质量编码探针,为生理环境中生物分子的多重检测以及组织样本的质谱成像提供了有力的技术工具。本文从探针结构组成、质谱分析方法以及在生化分析中的应用3个方面综述了质量编码探针在质谱多联检测方面的最新研究进展,并对其未来的发展方向进行了展望。
    Abstract: Mass-encoded probe is a probing tool that specifically identifies target molecules and thus outputs their characteristic ion signals with mass tags.It plays an important role in multiplex assay of disease markers, drug target screening and other biomedical applications.Based on various mass spectrometric methods, researchers have developed an array of mass tag-encoded probes with different structures and functions, providing powerful technical tools for multiplex detection of biomolecules in physiological environments and for mass spectrometry imaging of tissue samples.This review introduces the latest research progress of mass tag-encoded probes in multiplex mass spectrometric detection from three aspects, i.e. structural composition of the probes, mass spectrometric methods and their application in biochemical analysis, with a prospect of the future development of mass tag-encoded probes.
  • [1] Engreitz JM, Haines JE, Perez EM, et al.Local regulation of gene expression by lncRNA promoters, transcription and splicing[J]. Nature, 2016, 539(7629): 452-455.
    [2] Witkos TM, Chan WL, Joensuu M, et al. GORAB scaffolds COPI at the trans-Golgi for efficient enzyme recycling and correct protein glycosylation[J]. Nat Commun, 2019, 10(1): 127.
    [3] Liu R, Zhang SX, Wei C, et al.Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules[J]. Acc Chem Res, 2016, 49(5): 775-783.
    [4] Suttapitugsakul S, Sun FX, Wu RH. Recent advances in glycoproteomic analysis by mass spectrometry[J]. Anal Chem, 2020, 92(1): 267-291.
    [5] Sejalon-Cipolla M, Bruyat P, Bregant S, et al. Targeting out of range biomolecules: chemical labeling strategies for qualitative and quantitative MALDI MS-based detection[J]. Trac Trends Anal Chem, 2021, 143: 116399.
    [6] Zhang C, Wu FB, Zhang XR. ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum[J]. J Anal At Spectrom, 2002, 17(10): 1304-1307.
    [7] Li PF, Pang JL, Xu SX, et al. A glycoform-resolved dual-modal ratiometric immunoassay improves the diagnostic precision for hepatocellular carcinoma[J]. Angew Chem Int Ed, 2022, 61(21): e202113528.
    [8] Kahsai AW, Rajagopal S, Sun JP, et al. Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry[J]. Nat Protoc, 2014, 9(6): 1301-1319.
    [9] Messner CB, Demichev V, Bloomfield N, et al. Ultra-fast proteomics with scanning SWATH[J]. Nat Biotechnol, 2021, 39(7): 846-854.
    [10] Liu JY, Jarzabek J, Majonis D, et al. Metal-encoded polystyrene microbeads as a mass cytometry calibration/normalization standard covering channels from yttrium (89 amu) to bismuth (209 amu)[J]. Anal Chem, 2020, 92(1): 999-1006.
    [11] Zhang YF, Zabinyakov N, Majonis D, et al.Tantalum oxide nanoparticle-based mass tag for mass cytometry[J]. Anal Chem, 2020, 92(8): 5741-5749.
    [12] Xu ST, Liu MX, Feng J, et al. One-step hexaplex immunoassays by on-line paper substrate-based electrospray ionization mass spectrometry for combined cancer biomarker screening[J]. Chem Sci, 2021, 12(13): 4916-4924.
    [13] Tam TS, Cheng YH, Lok CN, et al. Surface optimization of gold nanoparticle mass tags for the sensitive detection of protein biomarkers via immuno-capture LI-MS[J]. Analyst, 2020, 145(19): 6237-6242.
    [14] Zhang ZZ, Xu HM, Fan YY, et al. Mass nanotags mediate parallel amplifications on nanointerfaces for multiplexed profiling of RNAs[J]. Nano Lett, 2023, 23(5): 1820-1829.
    [15] Ahmad R, Jang H, Batule BS, et al. Barcode DNA-mediated signal amplifying strategy for ultrasensitive biomolecular detection on matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry[J]. Anal Chem, 2017, 89(17): 8966-8973.
    [16] Li N, Zhang WF, Lin J, et al. A specific mass-tag approach for detection of foodborne pathogens using MALDI-TOF mass spectrometry[J]. Anal Chem, 2022, 94(9): 3963-3969.
    [17] Ferreira MS, de Oliveira DN, Mesquita CC, et al. MALDI-MSI: a fast and reliable method for direct melatonin quantification in biological fluids[J]. J Anal Sci Technol, 2016, 7: 1-6.
    [18] Xu ST, Liu HW, Bai Y. Highly sensitive and multiplexed mass spectrometric immunoassay techniques and clinical applications[J]. Anal Bioanal Chem, 2022, 414(18): 5121-5138.
    [19] Xu ST, Ma W, Bai Y, et al. Ultrasensitive ambient mass spectrometry immunoassays: multiplexed detection of proteins in serum and on cell surfaces[J]. J Am Chem Soc, 2019, 141(1): 72-75.
    [20] Kuang YQ, Cao JX, Xu FF, et al.Duplex-specific nuclease-mediated amplification strategy for mass spectrometry quantification of MiRNA-200c in breast cancer stem cells[J].Anal Chem, 2019, 91(14): 8820-8826.
    [21] Yang YM, Wang WQ, Liu HM, et al. Sensitive quantification of microRNA in blood through multi-amplification toehold-mediated DNA-strand-displacement paper-spray mass spectrometry (TSD-PS MS)[J]. Angew Chem Int Ed, 2022, 61(9): e202113051.
    [22] Mukherjee P, Berns EJ, Patino CA, et al. Temporal sampling of enzymes from live cells by localized electroporation and quantification of activity by SAMDI mass spectrometry[J].Small, 2020, 16(26): e2000584.
    [23] Hong SH, Kim JI, Kang H, et al. Detection and quantification of the Bcr/Abl chimeric protein on biochips using LDI-TOF MS[J].Chem Commun, 2014, 50(37): 4831-4834.
    [24] Xu HM, Huang XD, Zhang ZZ, et al. Protease-responsive mass barcoded nanotranslators for simultaneously quantifying the intracellular activity of cascaded caspases in apoptosis pathways[J]. Chem Sci, 2020, 11(20): 5280-5288.
    [25] Anahtar M, Chan LW, Ko H, et al. Host protease activity classifies pneumonia etiology[J]. Proc Natl Acad Sci U S A, 2022, 119(25): e2121778119.
    [26] Jia JH, Ao LJ, Luo YX, et al. Quantum dots assembly enhanced and dual-antigen sandwich structured lateral flow immunoassay of SARS-CoV-2 antibody with simultaneously high sensitivity and specificity[J]. Biosens Bioelectron, 2022, 198: 113810.
    [27] Zhong XQ, Qiao L, Gasilova N, et al. Mass barcode signal amplification for multiplex allergy diagnosis by MALDI-MS[J]. Anal Chem, 2016, 88(12): 6184-6189.
    [28] Zhang XW, Liu MX, He MQ, et al. Integral multielement signals by DNA-programmed UCNP-AuNP nanosatellite assemblies for ultrasensitive ICP-MS detection of exosomal proteins and cancer identification[J]. Anal Chem, 2021, 93(16): 6437-6445.
    [29] Ma W, Xu ST, Nie HG, et al. Bifunctional cleavable probes for in situ multiplexed glycan detection and imaging using mass spectrometry[J]. Chem Sci, 2019, 10(8): 2320-2325.
    [30] Chen X, Song HJ, Li ZY, et al. Lanthanide nanoprobes for the multiplex evaluation of breast cancer biomarkers[J]. Anal Chem, 2021, 93(40): 13719-13726.
    [31] Wang YN, Du RJ, Qiao L, et al. Ultrasensitive profiling of multiple biomarkers from single cells by signal amplification mass spectrometry[J]. Chem Commun, 2018, 54(69): 9659-9662.
    [32] Cheng YH, Cheung YF, Siu-Chung Tam T, et al.Plasmonic metal nanoparticles as efficient mass tags for ion signal amplification and ultrasensitive detection of protein markers[J]. Anal Chim Acta, 2019, 1055: 1-6.
    [33] Zhu ZJ, Ghosh PS, Miranda OR, et al. Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry[J]. J Am Chem Soc, 2008, 130(43): 14139-14143.
    [34] Han J, Huang X, Liu HH, et al. Laser cleavable probes for in situ multiplexed glycan detection by single cell mass spectrometry[J]. Chem Sci, 2019, 10(47): 10958-10962.
    [35] He ZY, Chen QS, Chen FM, et al. DNA-mediated cell surface engineering for multiplexed glycan profiling using MALDI-TOF mass spectrometry[J]. Chem Sci, 2016, 7(8): 5448-5452.
    [36] Hu JJ, Liu F, Ju HX. Peptide code-on-a-microplate for protease activity analysis via MALDI-TOF mass spectrometric quantitation[J]. Anal Chem, 2015, 87(8): 4409-4414.
    [37] Hu JJ, Liu F, Ju HX. MALDI-MS patterning of caspase activities and its application in the assessment of drug resistance[J].Angew Chem Int Ed, 2016, 55(23): 6667-6670.
    [38] Kuang YQ, Liu L, Wang ZC, et al. A photocleavable and mass spectrometric DNA-peptide probe enables fast and specific enzyme-free detection of microRNA[J].Talanta, 2020, 211: 120726.
    [39] Wang ZC, Li L, Kuang YQ, et al. Simultaneous quantification of multiple single nucleotide variants in PIK3CA ctDNA using mass-tagged LCR probe sets[J]. Talanta, 2023, 258: 124426.
    [40] Kallemeijn WW, Lanyon-Hogg T, Panyain N, et al. Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation[J]. Nat Protoc, 2021, 16(11): 5083-5122.
    [41] Xu ST, Liu MX, Bai Y, et al. Multi-dimensional organic mass cytometry: simultaneous analysis of proteins and metabolites on single cells[J]. Angew Chem Int Ed, 2021, 60(4): 1806-1812.
    [42] Liu ZR, Li XT, Xiao GY, et al. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: a review[J]. Trac Trends Anal Chem, 2017, 93: 78-101.
    [43] Luo YC, Yan XW, Huang YS, et al. ICP-MS-based multiplex and ultrasensitive assay of viruses with lanthanide-coded biospecific tagging and amplification strategies[J]. Anal Chem, 2013, 85(20): 9428-9432.
    [44] Wang CQ, Song HJ, Zhao X, et al. Multiplex DNA walking machines for lung cancer-associated miRNAs[J]. Anal Chem, 2022, 94(3): 1787-1794.
    [45] Kang Q, He M, Chen BB, et al. MNAzyme-catalyzed amplification assay with lanthanide tags for the simultaneous detection of multiple microRNAs by inductively coupled plasma-mass spectrometry[J]. Anal Chem, 2021, 93(2): 737-744.
    [46] Kang Q, Chen BB, He M, et al. Simple amplifier coupled with a lanthanide labeling strategy for multiplexed and specific quantification of microRNAs[J]. Anal Chem, 2022, 94(37): 12934-12941.
    [47] Han GJ, Zhang SC, Xing Z, et al. Absolute and relative quantification of multiplex DNA assays based on an elemental labeling strategy[J]. Angew Chem Int Ed, 2013, 52(5): 1466-1471.
    [48] Liu JY, Wong ECN, Lu E, et al. Control of metal content in polystyrene microbeads prepared with metal complexes of DTPA derivatives[J]. Chem Mater, 2021, 33(10): 3802-3813.
    [49] Dang JQ, Li HX, Zhang LL, et al. New structure mass tag based on Zr-NMOF for multiparameter and sensitive single-cell interrogating in mass cytometry[J].Adv Mater, 2021, 33(35): e2008297.
    [50] Delgado-Gonzalez A, Laz-Ruiz JA, Cano-Cortes MV, et al.Hybrid fluorescent mass-tag nanotrackers as universal reagents for long-term live-cell barcoding[J]. Anal Chem, 2022, 94(30): 10626-10635.
    [51] Tislevoll BS, Helles?y M, Fagerholt OHE, et al. Early response evaluation by single cell signaling profiling in acute myeloid leukemia[J]. Nat Commun, 2023, 14(1): 115.
    [52] Jin GQ, Sun DE, Xia XQ, et al.Bioorthogonal lanthanide molecular probes for near-infrared fluorescence and mass spectrometry imaging[J].Angew Chem Int Ed, 2022, 61(43): e202208707.
    [53] Claes BSR, Krestensen KK, Yagnik G, et al.MALDI-IHC-guided In-depth spatial proteomics: targeted and untargeted MSI combined[J]. Anal Chem, 2023, 95(4): 2329-2338.
    [54] Song XW, Zang QC, Li C, et al. Immuno-desorption electrospray ionization mass spectrometry imaging identifies functional macromolecules by using microdroplet-cleavable mass tags[J].Angew Chem Int Ed, 2023, 62(9): e202216969.
    [55] Rathore R, Corr JJ, Lebre DT, et al. Extending matrix-assisted laser desorption/ionization triple quadrupole mass spectrometry enzyme screening assays to targets with small molecule substrates[J]. Rapid Commun Mass Spectrom, 2009, 23(20): 3293-3300.
    [56] Anderson LL, Berns EJ, Bugga P, et al. Measuring drug metabolism kinetics and drug-drug interactions using self-assembled monolayers for matrix-assisted laser desorption-ionization mass spectrometry[J]. Anal Chem, 2016, 88(17): 8604-8609.
    [57] Kadem LF, Suana KG, Holz M, et al. High-frequency mechanostimulation of cell adhesion[J]. Angew Chem Int Ed, 2017, 56(1): 225-229.
    [58] Kim KL, Kim D, Lee S, et al. Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting[J]. Nat Commun, 2016, 7: 11107.
    [59] Titov DV, Cracan V, Goodman RP, et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio[J]. Science, 2016, 352(6282): 231-235.
    [60] Liang Y, Liu Q, Zhou Y, et al. Counting and recognizing single bacterial cells by a lanthanide-encoding inductively coupled plasma mass spectrometric approach[J]. Anal Chem, 2019, 91(13): 8341-8349.
    [61] Wu X, DeGottardi Q, Wu IC, et al. Lanthanide-coordinated semiconducting polymer dots used for flow cytometry and mass cytometry[J]. Angew Chem Int Ed, 2017, 56(47): 14908-14912.
    [62] Ros M, Nguyen AT, Chia J, et al. ER-resident oxidoreductases are glycosylated and trafficked to the cell surface to promote matrix degradation by tumour cells[J]. Nat Cell Biol, 2020, 22(11): 1371-1381.
    [63] Xu HM, Zhang ZZ, Wang YH, et al. Sense and validate: fluorophore/mass dual-encoded nanoprobes for fluorescence imaging and MS quantification of intracellular multiple microRNAs[J].Anal Chem, 2022, 94(16): 6329-6337.
    [64] Jiang LX, Yang MX, Wali SN, et al. High-throughput mass spectrometry imaging of biological systems: current approaches and future directions[J]. Trends Analyt Chem, 2023, 163: 117055.
    [65] Chen SM, Xiong CQ, Liu HH, et al. Mass spectrometry imaging reveals the sub-organ distribution of carbon nanomaterials[J].Nat Nanotechnol, 2015, 10(2): 176-182.
    [66] Xue JJ, Liu HH, Chen SM, et al. Mass spectrometry imaging of the in situ drug release from nanocarriers[J]. Sci Adv, 2018, 4(10): eaat9039.
    [67] Jiang YM, Sun J, Xiong CQ, et al. Mass spectrometry imaging reveals in situ behaviors of multiple components in aerosol particles[J]. Angew Chem Int Ed, 2021, 60(43): 23225-23231.
    [68] Yan B, Kim ST, Kim CS, et al. Multiplexed imaging of nanoparticles in tissues using laser desorption/ionization mass spectrometry[J]. J Am Chem Soc, 2013, 135(34): 12564-12567.
    [69] Elci SG, Yesilbag Tonga G, Yan B, et al. Dual-mode mass spectrometric imaging for determination of in vivo stability of nanoparticle monolayers[J]. ACS Nano, 2017, 11(7): 7424-7430.
    [70] Kwong GA, Ghosh S, Gamboa L, et al. Synthetic biomarkers: a twenty-first century path to early cancer detection[J]. Nat Rev Cancer, 2021, 21(10): 655-668.
    [71] Anahtar M, Chan LW, Ko H, et al. Host protease activity classifies pneumonia etiology[J]. Proc Natl Acad Sci U S A, 2022, 119(25): e2121778119.
    [72] Hao LL, Zhao RT, Welch NL, et al. CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics[J]. Nat Nanotechnol, 2023, 18:798-807.
  • 期刊类型引用(3)

    1. 丁艳,刘培培,闻武,陈捷,杭太俊. 环境中毒品检测技术研究进展与展望. 中国法医学杂志. 2024(01): 14-22 . 百度学术
    2. 覃昆飞,黄丽珍,何建忠. LC-MRM~3法测定中草药和药酒中3种强心作用的生物碱. 职业与健康. 2024(17): 2337-2345 . 百度学术
    3. 张小军,符慧慧. LC-MS/MS法对血栓通注射液中皂苷成分快速定量分析. 婚育与健康. 2024(22): 79-81 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  437
  • HTML全文浏览量:  5
  • PDF下载量:  238
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-07-25
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭